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Abstract

We investigate how an informed designer maximizes her objective when fac-

ing a player whose payoffdepends on both the designer’s private information and

on an unknown state within the classical quasilinear environment. The designer

can disclose arbitrary information about the state via Bayesian persuasion and

adopt arbitrary mechanisms. We characterize the Rothschild-Stiglitz-Wilson

(RSW) mechanism and identify three channels for achieving separation. While

disclosing ineffi cient information is essential, providing a bonus for participation
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and randomization are supplementary. The equilibrium is unique and robust

under weak assumptions. Our results can provide rationales for many phenom-

enons in practice.

Keywords: Bayesian persuasion, information design, mechanism design, in-

formed principal.

JEL Classifications: D11, D82, D83, L12

1 Introduction

In many, if not most, mechanism design situations, designers can disclose information

regarding a payoff relevant state of nature to players. In selling problems, for example,

film producers can fully determine how much information to include in trailers; video

game or software developers can fully design trial versions for their products. This

allows consumers to learn more about their valuations of the products. In procure-

ment, procurers can freely decide how much details about their pursued products to

put in information sessions, so that suppliers can form expectation about associated

production costs. In hiring CEOs, employers can freely determine how to disclose

information about the current status of their companies to candidates so that the can-

didates can judge whether their skills can meet the challenges in the companies. In

regulations, governments can disclose information about the features of the industry

to regulated firms who then can evaluate whether their existing technologies could fit

in the industry. In designing emission quotas, governments can reveal information to

polluting firms for estimating the effi ciency of their pollution reduction technologies.

In these situations, it is also common that designers may possess private and in-

formative (not necessarily perfect) information about the state at the beginning. In

selling problems, sellers know the quality of their products since they are likely to have

an unobservable informational advantage over consumers, i.e., the well-known lemon

problem. In procurements, procurers know more than the suppliers about the diffi -

culty in producing desired products. In hiring CEOs, companies know more than the
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candidates about their own profitability. In regulations, governments are likely to be

better informed than the monopolies about policies that affect the industry production

effi ciency. In designing emission quotas, governments are usually better informed than

the polluting firms about the average marginal emission abatement effi ciency of the

industry.

If privately informed designers have total freedom to disclose arbitrary information

about the state and to design arbitrary mechanisms, what outcome would we expect?

Would it be possible for designers with different types to separate from each other? If

so, what would be the most effi cient way to do so, given the flexibility of designers’

strategies? These are some of the questions we aim to address in this paper. In our

model, there is an unknown payoff relevant state of nature and the designer observes

a binary information which is informative about the state. The informed designer

(she) determines how much information regarding the state to reveal to the player

(he), chooses between binary social alternatives, and decides how monetary transfers

should be made. In order to allow any disclosure rules under full commitment, we

adopt the well-known approach of Bayesian persuasion pioneered by Kamenica and

Gentzkow (2011).

Following the literature on informed principal, we allow the designer to design a

direct grand mechanism in which she is a participant.1 This formulation allows the

most general strategy space for the designer. We first consider the perfect Bayesian

equilibrium (PBE) and show that it is outcome equivalent to consider a simplified

game. We then characterize the RSW (Rothschild-Stiglitz-Wilson) mechanism, which

was initially introduced by Maskin and Tirole (1992) and has been the main mecha-

nism studied in the literature on informed principal with common values. The RSW

mechanism is important and intuitive. It is defined as achieving the maximal payoff

for each type of designer among all safe mechanisms in which the player participates

regardless of his belief about the designer’s type.

1See Myerson (1983), Maskin and Tirole (1990, 1992), Severinov (2008), Mylovanov and Troger

(2012, 2014), Balkenborg and Makris (2015); Koessler and Skreta (2016, 2019).
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In the RSW mechanism of our model, the low-type designer’s problem is easy to

solve, and she achieves the same payoff as if her type were known by the player. She

discloses effi cient information and extracts the full surplus. In contrast, the high-

type designer’s problem is much more challenging. We show that her problem can be

reduced to a modified concavification problem with a single variable. We identify three

channels for achieving separation: disclosing ineffi cient information, providing a bonus

for participation, and randomization. Disclosing ineffi cient information always arises

and is thus essential. Providing a bonus for participation is necessary when the designer

has “distinct types”, and randomization may be needed when the designer has “similar

types”. Under weak assumptions, the equilibrium is unique. Our results can rationalize

why monopolists provide bonuses for trials and adopt promotional strategies, why

procurers hold free information session accompanied with complementary benefits,

why employers treat candidates in a generous manner, why regulators and governments

subsidize firms in early stages before establishment, and why governments provide

various benefits to participants in foreign investment.

We further conduct robustness checks for the RSW mechanism. First, we show

that the RSW mechanism can be supported as a PBE and then provide a suffi cient

condition such that its outcome equals that from the PBE. Second, we show that the

RSW mechanism always survives the intuitive criterion, and that the set of outcomes

from the intuitive equilibrium coincides with that from the RSW mechanism when

the designer’s two types are “similar”. It is worth noting that we obtain these results

without sorting assumptions commonly imposed in the literature. Therefore, this

reinforces the focus on the RSW mechanism in the literature. Finally, with more than

binary social alternatives, we show that similar results hold with linear payoffs.

In Chen and Zhang (2020), instead of considering a general mechanism design

problem, we restrict to the selling problem where a seller makes a take-it-or-leave-it

price after disclosing information to a buyer. It has been shown that a unique equilib-

rium exists that survives the intuitive criterion. Separating is achieved by disclosing
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ineffi cient information. A natural question then is: what if the seller is allowed to

choose any selling mechanism? To answer this, one needs to take the informed prin-

cipal approach, which is dramatically different from and more challenging than the

normative approach in Chen and Zhang (2020). It turns out that this question can be

treated as a very special case of the current paper, which covers many other applica-

tions such as procurements, hiring, regulations and emission quotas. Our results reveal

that the high-type seller can improve on the outcome in Chen and Zhang (2020). This

is achieved by uncovering two supplementary channels by means of which the low-

type seller’s mimicking incentive can be deterred: providing a bonus for the buyer’s

participation, and randomization. Therefore, compared with Chen and Zhang (2020),

the current paper consider a much more general problem, adopts a much more general

approach, and obtains new results.

This paper is related to the literature on Bayesian persuasion with an informed

sender.2 Perez-Richet (2014) considers a perfectly informed sender and demonstrates

that it is without loss of generality to focus on pooling equilibria. Alonso and Câmara

(2018) compare the profits of an informed and an uninformed sender and conclude

that the sender does not benefit from private information. Hedlund (2017) studies

an imperfectly informed sender who signals her type through Bayesian persuasion

and selects equilibria with D1 criterion. Koessler and Skreta (2022) allow a general

framework with multiple agents and introduce interim-optimal mechanisms. In these

studies, the only channel for signalling is information disclosure. In our paper, the de-

signer can also signal through the design of the mechanism, and we adopt the informed

principal approach, which requires different techniques.

This paper is related to the literature on mechanism design by an informed prin-

cipal. Myerson (1983) introduces the inscrutability principle, which states that it is

2See Hedlund (2017) for an excellent review of this strand of literature. There is also a large liter-

ature on Bayesian persuasion when the sender is not privately informed following the pioneering work

of Kamenica and Gentzkow (2011), and its multiple-receiver generalization which is often referred as

information design such as Bergemann and Morris (2016, 2019), Mathevet et al. (2020) and Taneva

(2019).
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without loss of generality to focus on pooling equilibria. He also introduces the concept

of safe allocation, which is incentive compatible and individually rational for the agent

given any belief about the principal’s type. Depending on whether the principal’s

private type affects the agent’s payoff, this literature can be divided into two strands:

private values and common values. In this paper, the player’s payoff depends on the

designer’s private information, and thus our model belongs to the latter. For this

strand, Maskin and Tirole (1992) introduce the RSW mechanism, which yields the op-

timal payoff for each type of principal among safe allocations.3 The RSW mechanism

then becomes the main focus of the informed principal with common values literature.

Its applications include collusion in Quesada (2005), auction design in Zhao (2018)

and bilateral trade in Segal and Whinston (2003) and Nishimura (2022).4 In these pa-

pers, informed principals do not disclose information. Besides being practical relevant,

information disclosure is special since it does not involve any explicit cost and is an

action with infinite dimensions. Furthermore, introducing information disclosure to

the informed principal problem brings new technical challenges as sorting assumptions

no longer hold. However, we show that many results remain valid without the sorting

assumptions.

In Skreta (2011), an informed seller observes a vector of signals correlated with

buyers’valuations before choosing the selling mechanism. She can decide whether to

disclose this information to the buyers. Koessler and Skreta (2016, 2019) investigate

whether an informed principal can benefit from certification technology with respect

3For the strand with private values, Maskin and Tirole (1990) examine whether the principal can

benefit from private information. Mylovanov and Troger (2012, 2014) investigate the existence and

properties of strongly neologism-proof allocations. Its applications include bilateral trading in Yi-

lankaya (1999), procurement contracting Tan (1996) and Balestrieri (2008), social decision making in

Severinov (2008), collusion in Francetich and Troyan (2012) and Hotelling competitions in Balestrieri

and Izmalkov (2016).
4Bedard (2017) provides conditions under which the principal strictly prefers not being fully

informed in the RSW mechanism. Dosis (2019) provides an alternative proof to Theorem 1 of Maskin

and Tirole (1992), which states that any allocation that weakly dominates the RSW mechanism can

be supported as an equilibrium allocation.
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to her own type. They focus on ex ante optimal allocation and show that it can always

be supported as an equilibrium. In those papers, the seller can disclose her private

information directly. In contrast, our designer directly discloses information about

a payoff-relevant state but not about her private information. In addition, we can

accommodate a general class of mechanism design problem.

Finally, this paper is related to the literature in which sellers design information

disclosure and selling mechanism jointly– but which lacks the signalling issue, the

main feature of our model. A buyer’s payoff depends on both his private information

and on other information that can be disclosed by the seller without cost. Eso and

Szentes (2007) develop an orthogonal decomposition technique, and show that the

optimal mechanism can be implemented by handicap auctions with full disclosure.

Li and Shi (2017) construct a discriminatory information disclosure that improves

the revenue in Eso and Szentes (2007). Hoffmann and Inderst (2011) assume costly

information disclosure, and identify the conditions such that information is over and

under provided.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 considers the full information benchmark. Section 4 considers perfect Bayesian

equilibria. Section 5 characterizes the RSW mechanism. Section 6 establishes the

robustness of the RSW mechanism. Section 7 considers applications and extensions.

Section 8 concludes. All proofs are contained in appendices.

2 The model

We build our general model based on the classical quasi-linear mechanism design

framework used in recent studies by Chen et al. (2019) and Gershkov et al. (2013).

Preliminaries

A risk-neutral designer (she) faces a risk-neutral player (he). There is an unknown

payoff-relevant state of nature denoted as ω. The designer receives private and infor-

mative (but not necessarily perfect) information, denoted as θ, about ω. We assume

7



that θ is a binary random variable on {L,H} with commonly known prior probabilities

µ0
L and µ

0
H= 1− µ0

L, respectively. When the designer’s type is θ, the state ω follows

an atomless distribution with c.d.f Fθ(ω) and p.d.f fθ(ω) on the common support

[ω, ω] ⊆ R+. We assume that fθ(ω) satisfies the standard monotone likelihood ratio

property: fH(ω)
fL(ω)

> fH(ω′)
fL(ω′) ,∀ω > ω′, which means that when the designer’s type is H,

the state is more likely to be higher. Bayes’rule implies that the prior belief about

the state is f(ω) = µ0
HfH(ω) + µ0

LfL(ω).

We assume that the designer can directly disclose information about the state ω via

Bayesian persuasion, but not about her private information θ. Note that the situation

where the designer could disclose her private information θ directly is a special case

of our model by letting ω and θ be perfectly correlated. In this case, it is trivial that

the full information outcome can be achieved.5

For expositional clarity, we start with a binary set K = {0, 1} of social alternatives,

which has natural interpretations in applications. For example, in monopoly pricing

with single unit object, the decision is to sell or not to sell. In procurement, a procurer

decides whether to proceed with a supplier. In hiring, the decision is whether to hire

a candidate. In regulation, the decision is whether to allow the regulated firm to

produce. In emission problem, the government decides whether to issue a permission

to a polluting firm. In Section 7.3, we show that all results extend beyond binary

alternatives if we assume linear payoffs. For alternative 1, given the designer’s type θ,

the state ω and the monetary transfer from the player to the designer t, the player’s

ex-post payoff is P (θ, ω)−t, and the designer’s ex-post payoff is D (θ, ω)+t. We do not

impose any sign restrictions on P (θ, ω), D(θ, ω) and t to allow various applications.

For instance, the monetary transfer could be made from the player to the designer

(positive), or the other way around (negative). We call P (θ, ω) the player’s return,

and D(θ, ω) the designer’s return. The ex-post total surplus can be calculated as

T (θ, ω) = P (θ, ω) + D(θ, ω), which is independent of t due to the quasi-linearity. We

5See more discussion in Section 7.2 of Chen and Zhang (2020).
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let k = 0 denote the alternative representing the outside option where both the player

and the designer receive zero payoffs.6

Regular environment

We impose some regularity conditions on the environment.

Definition 1 The environment is regular if

(i) T (θ, ω) ≥ 0, and is strictly increasing in ω,

(ii) P (θ, ω) is weakly increasing in θ, and P (θ, ω) is strictly increasing in ω,

(iii) D(θ, ω) is weakly decreasing in θ, and D(θ, ω) is weakly decreasing in ω,

(iv) −D(H,ω)+D(L,ω)
P (H,w)+D(L,ω)

is weakly decreasing in ω, and [D(L,ω)−D(L,ω)]fL(ω)
[D(H,ω)−D(L,ω)]fH(ω)

is weakly increas-

ing in ω.

Conditions (i) to (iii) are more about intuitive ways to define the designer’s type

and the state: a higher designer’s type weakly benefits the player, and weakly hurts the

designer; and a higher state strictly benefits the player, weakly hurts the designer, and

strictly enhances the total surplus. The opposite relationship can be accommodated by

redefining variables. Condition (iv) has intuitive explanations. All terms are modified

by D(L, ω), i.e., low-type designer’s return at the lowest state. If D(L, ω) = 0, as is

common in applications, the condition requires that when the state is higher, the ratio

between the returns for the designer and player weakly increases, and the ratio between

the low-type and high-type designer’s return increases faster than the likelihood ratio.

Condition (iv) is always satisfied if the designer’s return does not depend on the state.

Now we describe some applications of the general framework and explicitly restate the

regularity conditions.

Application 1 Monopoly pricing: Suppose a monopoly sells a single unit product to

a buyer. Here ω represents the valuation of the product to the buyer, and θ represents

the quality of the product, which only influences the distribution of ω. The seller only

cares about the payment from the buyer. The production cost is normalized to be zero.

6If the outside option is nonzero as in Akerlof (1978), then what matters is the payoff difference

between alternatives.
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In this case, we have P (θ, ω) = ω and D(θ, ω) = 0. The regularity condition is always

satisfied.

Application 2 Procurement: Suppose a procurer purchases a product from a sup-

plier. Here ω represents the supplier’s production effi ciency, and θ represents the

simplicity in producing the required product. The procurer’s valuation for the prod-

uct is V , and it costs the supplier c(θ, ω) to produce the product. Therefore, we

have P (θ, ω) = −c(θ, ω) and D(θ, ω) = V . The regularity conditions reduce to (i)

−c(L, ω) + V ≥ 0, (ii) c(θ, ω) is weakly decreasing in θ, and strictly decreasing in ω.

Application 3 Hiring: Suppose a firm wants to hire a CEO. Here ω represents the

CEO’s productivity in the firm. And θ represents the multiplicative inverse of the

firm’s profitability. If the CEO is hired, the firm obtains a revenue 1
θ
, and the CEO

incurs a cost c(ω) in running the firm. Therefore, we have P (θ, ω) = −c(ω) and

D(θ, ω) = 1
θ
. The regularity conditions reduce to (i) c(ω) ≤ 1

H
, (ii) c(ω) is strictly

decreasing in ω, (iii) H ≥ L.

Application 4 Regulating a monopoly: Suppose a government decides whether to

allow a monopoly to produce. Here ω represents the monopoly’s production effi ciency,

and θ represents the government’s private information about the industry production

effi ciency that is informative about ω. If the monopoly produces, it generates a rev-

enue of R by incurring a cost c(θ, ω), and produces a consumer surplus CS. The

government cares about the consumer surplus and the transfer from the regulated firm.

Therefore, P (θ, ω) = R− c(θ, ω) and D(θ, ω) = CS. The regularity conditions reduce

to (i) R + CS ≥ c(θ, ω), (ii) c(θ, ω) is weakly decreasing in θ, and strictly decreasing

in ω.

Application 5 Emission quotas: Suppose a government decides whether to issue

a permission to a polluting firm. Here ω represents the polluting firm’s revenue from

production, and θ represents the government’s private information about the abatement

effi ciency of the industry. If the government issues the permission, the polluting firm

enjoys a revenue of ω, but generates a public environmental cost c(θ). The government
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cares about the transfer from the polluting firm and the environmental consequence.

Therefore, P (θ, ω) = ω and D(θ, ω) = −c(θ). The regularity conditions reduce to (i)

ω ≥ c(H), (ii) c(H) ≥ c (L) .

The direct grand mechanism

Following the informed principal literature, we allow the designer to propose a

grand mechanism in which she herself is a participant. More specifically, the designer

and the player engage in the following game. First, the designer proposes a grand

mechanism, which is a continuation game that specifies (i) message spaces for both

the designer and the player, and (ii) for each possible type of the designer, a rule to

implement a mixed package of information disclosure and mechanism. Second, the

player decides whether to participate. If he declines, the game ends; otherwise, the

game goes to the next stage. Third, if the player participates, the grand mechanism

is executed. By the revelation principle, for any on-equilibrium-path strategy, it is

without loss of generality to focus on direct grand mechanisms in which the designer’s

and the player’s message spaces are their type spaces.

For the information disclosure, we model it as Bayesian persuasion following Ka-

menica and Gentzkow (2011). A disclosure policy is a costless statistical experiment

π, which is a family of conditional distribution π (s|ω) over a finite set of signal real-

ization space S such that
∑

s∈S π (s|ω) = 1, ∀ω. Similar to Kamenica and Gentzkow

(2011), the same results apply if π is a measurable function over a compact metric

space S. This is because in the end we only need two signals. Let Π denote the set of

all possible statistical experiments.

When the designer discloses information through Bayesian persuasion, we assume

that the realized signal is only observable to the player. For instance, after users’

trials of a game or software, sellers do not know whether users like the product or

not; suppliers, CEOs, regulated firms and polluting firms also privately updates their

information after information sessions. When the player reports to the designer that

his realized signal is s, which need not be true, the designer implements alternative 1

11



with probability q(s) for a payment t(s) which could be either positive or negative.7

The designer can also demand a monetary transfer I, from the player for participa-

tion. We assume an ex-ante participation constraint for the player. All our results

hold with an ex-post participation constraint if the player can only observe the signal

but not the state ex-post. This is because the ex-post participation constraint is a

stronger requirement than the ex-ante participation constraint from the point view of

the designer. As to be shown in the paper, the equilibrium strategies for both types

satisfy the ex-post participation constraints. If I is positive (negative), we call it a par-

ticipation fee (bonus). The mechanism is thus characterized by γ = (I, q(s), t (s))s∈S .

Let Γ denote the set of all possible mechanisms.

A package is a combination of one statistical experiment and one mechanism. A

mixed package φ ∈ ∆(Π × Γ) is a probability measure on packages. The support

of φ could be either continuous or discrete: when it is continuous, φ is a density

function with respect to the Lebesgue measure on the Borel σ−field of Π×Γ; when it

is discrete, φ is a density with respect to the discrete uniform measure, and we adopt

the convention that for any function ϑ on Π× Γ :∫
ϑ (π, γ)φ (π, γ) dπdγ =

∑
π,γ∈supp(φ)

ϑ (π, γ)φ (π, γ) . (1)

We assume that two mixed packages that differ in zero measure will be perceived

identically by the player.8

A direct grand mechanism is a menu of mixed packages, one for each type of

designer, denoted as Φ = {φθ}θ=L,H . Each type needs to specify the mixed package

she would adopt if her type were both L and H. Therefore, when the designer adopts

the direct grand mechanism Φ, she states that “If I am type L, I would implement φL;

and if I am type H, I would implement φH”.

Timing
7Since all parties are risk neutral, all monetary transfers matter only in expectation.
8This is mainly for expositional convenience. Otherwise, for any equilibrium, there exist infinite

many other equilibria that differ in zero measure.
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The timing of the game is as follows.

• The nature draws a private type for the designer.

• The designer proposes a direct grand mechanism Φ.

• The player observes the designer’s choice and decides whether to participate.

• If the player does not participate, the game ends; otherwise, the direct grand

mechanism is executed, within three stages.

• In the first stage (interim stage), given the designer’s reported type θ, a package

(π, γ) is publicly chosen according to the mixed package φθ(π, γ).

• In the second stage, a monetary transfer I is made from the player to the designer

for participation, and a signal is generated according to π. The player observes the

signal privately and reports to the designer, say s.

• In the third stage (posterior stage), the designer implements alternative 1 with

probability q(s) for a payment t(s).

Payoffs

First look at the player’s payoff. In the third stage, given the designer’s type θ,

the statistical experiment π, and the realized signal s, the player’s posterior return of

the alternative 1 is

V (θ, s, π) =

∫ ω
ω
P (θ, ω)π(s|ω)f θ(ω)dω∫ ω
ω
π(s|ω)f θ(ω)dω

. (2)

When the player holds an interim belief ξ about the designer’s type, with a slight

misuse of notation, the player’s expected posterior return of the alternative is

V (ξ, s, π) =
ξ
∫ ω
ω
P (H,ω)π(s|ω)fH(ω)dω+ (1− ξ)

∫ ω
ω
P (L, ω)π(s|ω)fL(ω)dω

ξ
∫ ω
ω
π(s|ω)fH(ω)dω+ (1− ξ)

∫ ω
ω
π(s|ω)fL(ω)dω

. (3)

In the second stage, given the designer’s type θ, the probability of generating signal s

is

g (θ, s, π) =

∫ ω

ω

π(s|ω)f θ (ω) dω. (4)

Thus, given the designer’s type θ, a truthful player’s interim payoff in the first stage
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is

u (θ, π, γ) =
∑
s∈S

[
q (s)

∫ ω

ω

P (θ, ω)π(s|ω)fθ(ω)dω − t (s) g (θ, s, π)

]
−I. (5)

Given φ and the designer’s type θ, a truthful player’s expected payoff is

U(θ, φ) =

∫
u (θ, π, γ)φ (π, γ) dπdγ. (6)

Now let us look at the designer’s payoff at various stages. Type-θ designer’s interim

payoff is

rθ(π, γ) =
∑
s∈S

[
t (s) g (θ, s, π) + q (s)

∫ ω

ω

D(θ, ω)π(s|ω)fθ(ω)dω

]
+I. (7)

Type-θ designer’s expected payoff is

Rθ(φ) =

∫
rθ(π, γ)φ (π, γ) dπdγ. (8)

3 The full information benchmark

We first examine the benchmark where the designer’s type is commonly known. It is

clear that the designer’s payoff cannot be higher than what she can achieve from a

fully effi cient outcome with full surplus extraction. For a fully effi cient outcome, she

should always implement alternative 1 due to the regularity condition (i) in Definition

1. This results in a total surplus of
∫ ω
ω
T (θ, ω)fθ(ω)dω. To extract the full surplus,

the designer can adopt no disclosure and charge a participation fee
∫ ω
ω
P (θ, ω)fθ(ω)dω.

This is summarized in the following proposition.

Proposition 1 In the full information benchmark, it is optimal for each type of the

designer to disclose no information and charge a participation fee
∫ ω
ω
P (θ, ω)fθ(ω)dω.

This proposition is important for us to understand the distortion introduced by

the privacy of designer’s information. Now we go back to the original model. In what

follows, we first introduce the perfect Bayesian equilibrium (PBE) and establish an

important result to simplify the problem. Second, we solve the RSW mechanism.

Third, we establish the robustness of the RSW mechanism.
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4 PBE

In a PBE, (1) both the designer and the player update their beliefs according to Bayes’

rule wherever possible; (2) given their beliefs, the designer chooses a direct grand

mechanism optimally, and both the designer and the player report optimally. By the

inscrutability principle in Myerson (1983), it is without loss of generality to assume

that both types of designer choose the same direct grand mechanism Φ = {φθ}θ=L,H .

Note that the mixed package to be implemented still depends on the type of designer.

The idea is that any information that can be revealed through the choice of direct grand

mechanism can be revealed through the mixed package to be implemented following

the designer’s report. We refer to φθ as type−θ designer’s mixed package.

We do not aim to characterize every PBE since our focus is the RSW mechanism.

Instead, we consider a simplified game by imposing some restrictions on the direct

grand mechanism, and show that it is outcome equivalent to the original game.

Definition 2 In a simplified game, the designer randomizes only on packages where

(a) the signal realization space for the statistical experiment is binary, i.e., S =

{s1, s2},
(b) the choice of the alternative in the mechanism is deterministic with q(s1) = 1

and q(s2) = 0,

(c) if only one signal i ∈ {1, 2} is used in the statistical experiment, the mechanism
has zero payment conditional on si, t(si) = 0; if both signals are used, the mechanism

has zero payment conditional on s2, t(s2) = 0.

In the simplified game, the direct grand mechanism for the designer is much simpler.

For the statistical experiment, the designer needs only to decide how to divide the

states into two partitions. If only one signal is used in the statistical experiment, the

mechanism conditional on the unused signal is not well defined. We thus have two

different situations. If both signals are used, the designer needs to determine I and

t(s1); otherwise, the designer needs only to determine I. Note that the direct grand

mechanism in the simplified game is still flexible since I can be none zero and the
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designer can randomize.9

Definition 3 Two outcomes are equivalent if each type of designer achieves the same

expected payoff, implements alternative 1 with the same probability, and the player

gains the same expected payoff given the designer’s type.

The equivalency is imposed not only on the designer’s expected payoff, but also on

the choice of alternative and the player’s expected payoff, and therefore, is in a strong

form. The following proposition states the equivalency result.

Proposition 2 For any PBE in the original game, there exists an outcome equivalent

PBE in the simplified game, and vice versa.

The equivalency is intuitive. Similar to Myerson (1985), any choice rules of alter-

natives that are incentive compatible for the player “can be approximated arbitrarily

closely (except possible on a countable set) by a convex combination of the determin-

istic allocation rules without changing expected payoff”. We provide a formal proof

of this statement in our setup. With deterministic choice rules, we can combine all

signals that result in the same choice of alternative into a unique signal. By applying

the revelation principle in a similar way to Kamenica and Gentzkow (2011), we can

restrict ourselves to straightforward experimental statistics. With binary alternatives,

we can restrict to binary signal space, denoted as S = {s1, s2}, i.e., (a) in Definition

2. Since the roles of the two signals can always be exchanged, we refer to them as s1

and s2, such that q(s1) = 1 and q(s2) = 0, respectively, i.e., (b) in Definition 2. Fur-

thermore, whether a constant payment is made before or after information is disclosed

makes no difference due to risk neutrality, which implies (c) in Definition 2.

In the original game, while more PBE can be identified, the set of outcomes is

the same as that of the simplified game; while more off-equilibrium-path deviations

have to be considered, it is suffi cient to consider those satisfying the restrictions in

9For the application to monopoly pricing, the simplified game is different from Chen and Zhang

(2020) where I = 0 and the seller does not randomize.
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the simplified game. As a result, if we care only about the equilibrium outcome, it is

without loss of generality to examine the simplified game. This proposition will help

us to establish similar equivalency when we consider the RSW mechanism.

We introduce a class of statistical experiments that is of significance: a monotone

binary partition with cutoffy, denoted by π(y).With this statistical experiment, signal

s1 will be realized if the state is higher than y; otherwise, s2 will be realized, i.e.,

π(s1|ω) =

 1, if ω ≥ y;

0, otherwise.
(9)

By Definition 2, a mixed package with monotone binary partition π (ω) always imple-

ments alternative 1 and requires zero payment; for a mixed package with monotone

binary partition y > ω, it implements alternative 1 if and only if ω ≥ y, and the

payment when implementing alternative 0 is zero. Since the total surplus from alter-

native 1 is always greater than that from alternative 0, π(ω) can be called the effi cient

disclosure. The higher y is, the less effi cient the statistical experiment will be. Denote

the set of all monotone binary partitions as ΠM .

5 The RSW mechanism

As discussed in the introduction, the most prominent mechanism to examine is the

RSW (Rothschild-Stiglitz-Wilson) mechanism introduced byMaskin and Tirole (1992).

In our paper, the RSW mechanism can always be supported as a PBE and survives

the intuitive criterion as to be shown in Section 6. We first reproduce its definition in

our setup below.

Definition 4 A direct grand mechanism Φ = {φθ}θ=L,H is a safe mechanism if

Rθ(φθ) ≥ Rθ(φθ′),∀θ 6= θ′, (10)

[q (s)− q (ŝ)]V (θ, s, π) ≥ t (s)− t (ŝ) ,∀s, ŝ, θ, (11)

U(θ, φθ) ≥ 0,∀θ. (12)
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Constraint (10) is the designer’s incentive compatibility constraint. Constraint

(11) is the player’s incentive compatibility constraint when he knows the designer’s

type.10 Constraint (12) is the player’s individual rationality constraint when he knows

the designer’s type. Constraints (11) and (12) are often termed as the player’s full-

information IC and IR constraints.

Definition 5 A direct grand mechanism ΦW = {φWθ }θ=L,H is a RSW mechanism if

∀θ,
RW
θ = Rθ(φ

W
θ ) = max

Φ
Rθ(φθ), s.t. Φ is a safe mechanism. (13)

In the RSW mechanism, the two types of designer simultaneously maximize their

own payoffs among the safe mechanisms, given the mixed package adopted by the

other type. This is also known as the best safe mechanism.

5.1 Simplify the problem

The RSW mechanism is diffi cult to solve since we need to find a fixed point. The

following proposition shows that the RSW mechanism can be obtained successively.

Proposition 3 The RSW mechanism can be obtained by successively solving Problem

PL :

RW
L = RL(φWL ) = max

φL
RL(φL), (14)

s.t. [q (s)− q (ŝ)]V (L, s, π) ≥ t (s)− t (ŝ) ,∀s, ŝ, (15)

U(L, φL) ≥ 0; (16)

10Strictly speaking, this is φθ (π, γ) [q (s)V (θ, s, π)− t (s)] ≥ φθ (π, γ) [q (ŝ)V (θ, s, π)− t (ŝ)] , ∀s, ŝ,
since it only needs to be satisfied for the package in the support of the direct grand mechanism.

When φθ (π, γ) = 0, the constraint is always satisfied; when φθ (π, γ) > 0, it reduces to the expression

above. Furthermore, if a statistical experiment uses a single signal, this constraint disappears since

the player cannot misreport. Throughout the paper, we follow this interpretation for all player’s

incentive compatibility constraints to avoid cumbersome notations.
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and Problem PH :

RW
H = RH(φWH ) = max

φH
RH(φH), (17)

s.t. RW
L ≥ RL(φH), (18)

[q (s)− q (ŝ)]V (H, s, π) ≥ t (s)− t (ŝ) ,∀s, ŝ, (19)

U(H,φH) ≥ 0. (20)

Compared with the original problem, the successive problem differs in two aspects,

both relating to the mimicking constraint (10). First, for Problem PL, the low-type

designer no longer needs to consider the high-type designer’s mimicking incentive.

As a result, her problem is equivalent to the case where her type is known by the

player. Second, in Problem PH , the low-type designer’s on-path payoff is now replaced

by the solution from Problem PL. From this successive form, it is clear that the

RSW mechanism corresponds to the least costly separating mechanism– i.e., Riley

outcome in the signaling literature. Maskin and Tirole (1992) show that when a sorting

assumption holds, the RSW mechanism can be solved successively. Unfortunately,

this sorting assumption fails in our setup.11 We establish the above proposition by

constructing a lower bound of the high-type designer’s payoff and showing that it

is higher than her payoff from mimicking the low-type designer’s strategy solved in

Problem PL.

With Proposition 3, the designer’s direct grand mechanism is still quite flexible.

The following proposition shows that we can restrict ourselves to the simplified game

if we care only about outcomes, similarly to Proposition 2 for PBE.

Proposition 4 For any RSWmechanism in the original game, there exists an outcome-

equivalent RSW mechanism in the simplified game which further does not randomize

on I, and vice versa.

Thus, if we focus on outcome, it is without loss of generality to consider the simpli-

fied game with a further simplification that a mixed package does not randomize on I.

11A discussion of the sorting assumption is provided in Appendix D.
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For PBE, we cannot impose this further restriction since it results in loss of generality

when the designer partially pools on packages. This restriction can be imposed for

the RSW mechanism since it corresponds to a separating equilibrium. One may ask

whether we can restrict the game even further and establish the equivalency result.

For example, in addition we can restrict the game such that the designer sets I = 0 or

does not randomize. As we will see later, the equivalency fails since the opposite will

be the features of the RSW mechanism in general.

Whenever we add “simplified”in front of a terminology, it relates to the simplified

game. Let ΠB and ΓD denote the set of simplified statistical experiments and simplified

mechanism. Denote t(s1) = t. A simplified mixed package can now be represented

by (ς(π, t), I) ∈ ΠB × ΓD, where ς is a probability measure on binary partitions and

the payment when implementing alternative 1. Participation transfer I is outside of ς

because of the further restriction in Proposition 4.

5.2 Problem PL

By utilizing Proposition 4, we can rewrite Problem PL in Proposition 3:

RW
L = RL(ςWL , I

W
L ) = max

ςL,IL
RL(ςL, IL), (21)

s.t. V (L, s1, π) ≥ t ≥ V (L, s2, π), (22)∫
g(L, s1, π)

[
V (L, s1, π)− t

]
ςL(π, t)dπdt− IL ≥ 0. (23)

Note that for statistical experiments using a single signal, the player’s IC constraint

(22) disappears since the player cannot misreport his observed signal. Problem PL

is equivalent to the low-type designer’s payoff maximization problem if her type is

observable by the player. It is clear that her payoffcannot be higher than what she can

achieve from a fully effi cient outcome with full surplus extraction. For a fully effi cient

outcome, she should always implement alternative 1. According to the definition of the

statistical experiment, s1 should always be sent, i.e., π(ω), implying that the statistical

experiment is unique and discloses effi cient information. This generates an expected
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return of
∫ ω
ω
P (L, ω)fL(ω)dω for the player. To extract the full surplus, she sets the

participation fee as equal to the player’s expected return. This is summarized in the

following proposition.

Proposition 5 In the RSW mechanism, the low-type designer’s mixed package is

unique and involves a single package: an effi cient statistical experiment π(ω) with

a participation fee IWL =
∫ ω
ω
P (L, ω)fL(ω)dω.

In our framework, no disclosure is an effi cient statistical experiment. This propo-

sition implies that there is no distortion for the low-type. In contrast to Proposition

1, the uniqueness can be established since we are now restricted to simplified games.

5.3 Problem PH

Here is the road map to solve Problem PH . First, we show that for each package,

it has to be a monotone binary partition and the payment for alternative 1 equals

the player’s conditional expected return (Lemma 1). Second, we show that the low-

type designer’s mimicking constraint must be binding (Lemma 2). These two steps

reduce the high-type designer’s problem to determining the randomization on cutoffs

for monotone binary partitions only, which becomes a modified concavification problem

for a function with a single variable (Lemma 3). We then summarize the solution to

Problem PH in Proposition 6.

By utilizing Proposition 4, we can rewrite Problem PH in Proposition 3:

RW
H = RH(ςWH , I

W
H ) = max

ςH ,IH
RH(ςH , IH), (24)

s.t. RW
L ≥ RL(ςH , IH), (25)

V (H, s1, π) ≥ t ≥ V (H, s2, π), (26)∫
g(H, s1, π)

[
V (H, s1, π)− t

]
ςH(π, t)dπdt− IH ≥ 0. (27)

The following lemma establishes some necessary features of the high-type designer’s

mixed package implemented in the RSW mechanism.
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Lemma 1 In the RSW mechanism, the high-type designer’s mixed package only ran-

domizes on packages where

(i) the statistical experiment is a monotone binary partition π(y) with y ∈ [ω, ω],

(ii) for monotone binary partitions except π (ω) or π (ω) , the payment for alterna-

tive 1 is equal to the player’s conditional expected return V (H, s1, π): t =
∫ ω
y P (H,ω)fH(ω)dω

1−FH(y)
.

Here is the intuition. (i) Given the high-type designer’s probability of implementing

alternative 1, a monotone binary partition maximizes the player’s return and minimizes

the low-type designer’s probability of implementing alternative 1 due to likelihood-

ratio dominance. This maximizes the player’s willingness to participate and minimizes

the low-type designer’s incentive to mimic. (ii) The payment when implementing

alternative 1 is such that the player who obtains alternative 1 is indifferent from

outside option. In this way, the designer does not leave any surplus to the player who

obtains alternative 1 after participation. Note that when π = π(ω) or π (ω) , only

one signal is used in the experimental statistic and we have t = 0 according to the

definition of the simplified game.

Lemma 1 simplifies Problem PH significantly. The statistical experiment is deter-

mined by a single variable, the cutoff y, according to (i). Given the cutoff, t is uniquely

determined according to (ii). As a result, choosing ςH(π, t) is reduced to choosing the

randomization on the cutoff for the monotone binary partition only. Let σH(y) denote

a probability measure on cutoffs y ∈ [ω, ω].12 Then in Problem PH we only need to

determine the optimal σH(y) and IH . The following lemma implies that IH can be

fully determined by σH(y).

Lemma 2 The low-type designer’s mimicking constraint (25) must be binding.

This is intuitive. Otherwise, the high-type designer can always achieving a higher

payoff by either increasing the participation fee or choosing alternative 1 more often.

12For discrete distribution we adopt the convention as in (1).
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By (25) , we have

IH = RW
L −

∫
y∈(ω,ω)

[
1− FL(y)

1− FH(y)

∫ ω

y

P (H,ω)fH(ω)dω +

∫ ω

y

D(L, ω)fL(ω)dω

]
σH(y)dy.

(28)

Therefore, the remaining problem is to determine the optimal σH(y). Let

N(y) =

∫ ω

y

1− FL (y)

1− FH(y)
P (H,ω)fH(ω)dω +

∫ ω

y

D(L, ω)fL(ω)dω (29)

M(y) =

∫ ω

y

[
FL (y)− FH(y)

1− FH(y)
P (H,ω) +D(H,ω)

]
fH(ω)dω −

∫ ω

y

D(L, ω)fL(ω)dω

(30)

The term N(y) is the low-type designer’s mimicking payoff excluding participation

transfer, and M(y) is the difference between the high-type designer’s payoff and the

low-type designer’s mimicking payoff. It can be shown that N(y) is strictly decreas-

ing in y. As a result, the inverse function of N(y) exists and we have M(y) =

M(N−1(N(y))). Denote B = M(N−1) and x = N(y). Since N(y) is strictly decreas-

ing, choosing a randomization on the cutoffy is equivalent to choosing a randomization

on x. Let κH(x) denote a probability measure for x on [N(ω), N(ω)]. The following

lemma shows how to determine the optimal κH(x).

Lemma 3 The optimal κH(x) is determined by solving

max
κH

∫ N(ω)

N(ω)

B(x)κH(x)dx (31)

s.t. RW
L ≤

∫ N(ω)

N(ω)

xκH(x)dx. (32)

This formula has a natural interpretation. The high-type designer chooses the

lower-type designer’s mimicking payoff excluding the participation transfer to max-

imize the difference between her own payoff and the low-type designer’s mimicking

payoff, such that the low-designer’s on-path payoff is less than the mimicking payoff

excluding the participation transfer.
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If the constraint (32) binds, the above problem is a standard concavification prob-

lem for a function with a single variable. While our problem involves some modifica-

tion, it can be solved similarly. Let B̂(x) denote the concave closure of B(x) :

B̂(x) = sup{z|(x, z) ∈ co(B)} (33)

where co(B) defines the convex hull of the graph of B. Note that while we allow

the state to follow a general distribution, our concavification problem is captured by a

single variable and has a graphical representation.13 With a single variable, the optimal

solution can always be achieved by mixing over at most two points, say x1 ≤ x2 with

probabilities η and 1− η such that x1 + (1− η)x2 = RW
L . The solution to our modified

concavification problem then depends on the relationship between RW
L and the peak

of B(x) denoted as x#
H , which is always strictly higher than N(ω).14 If RW

L < x#
H , then

the solution is κH(x) degenerating to x#
H ; otherwise, the solution is determined by the

concavification. We now can summarize the solution to Problem PH .

Proposition 6 In the RSW mechanism, the following mixed package solves the high-

type designer’s problem.

(i) When RW
L < x#

H , it involves a single package: a monotone binary partition

π(N−1(x#
H)), a participation bonus IWH = RW

L − x#
H < 0, and a payment tWH =∫ ω

N−1(x#
H
)
P (H,ω)fH(ω)dω

1−FH(N−1(x#H))
for implementing alternative 1.

(ii) When RW
L ≥ x#

H , it involves a (possible) randomization on at most two pack-

ages: for package i ∈ {1, 2}, it features a monotone binary partition with cutoff
N−1(xi), zero participation transfer IWH = 0, and a payment tWH =

∫ ω
N−1(xi)

P (H,ω)fH(ω)dω

1−FH(N−1(xi))

for implementing alternative 1.

The RSW mechanism is unique if and only if the modified concavification problem

in Lemma 3 has a unique solution.

In the RSW mechanism, the high-type designer has three channels by means of

which to separate: (C1) disclosing ineffi cient information, (C2) providing a bonus for
13In Kamenica and Gentzkow (2011), the concavification problem beyond binary states usually

has higher dimensions and is much more diffi cult to solve. Significant progresses have been made in

Dworczak and Martini (2019), Kolotilin (2018), and Kolotilin and Wolitzky (2020).
14If there are multiple peaks, let x#H be the one on the most right.
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participation, and (C3) randomizing on packages. For channel (C1), although lower

effi ciency hurts the high-type designer, it hurts the low-type designer more due to

the monotone likelihood ratio property. In some sense, it satisfies the property of

increasing difference required for separation. For channel (C2), it hurts both types of

designer in the same way as it entails merely a transfer to the player, and does not

satisfy the increasing difference. As a result, it cannot achieve separation by itself.

For Channel (C3), randomization on cutoffs already implies ineffi ciency, thus, (C1)

becomes active. In summary, (C1) is active all the time; (C2) and (C3) cannot achieve

separation alone, but can be used as supplements to (C1) since they influence the cost

of separation.

To understand the two cases in the proposition, we consider the following inter-

pretation. Let F1 (ω) and F2 (ω) be two distributions that satisfy the monotone like-

lihood ratio property: f1(ω)
f2(ω)

> f1(ω′)
f2(ω′) ,∀ω > ω′. Let P (1, ω) , D (1, ω), P (2, ω) and

D (2, ω) be return functions that satisfy the regularity conditions. Suppose for the

high type (FH(ω), P (H,ω) , D (H,ω)) = (F1(ω), P (1, ω) , D (1, ω)); for the low type,

(FL(ω), P (L, ω) , D (L, ω)) is (F1(ω), P (1, ω) , D (1, ω)) with probability of α ∈ [0, 1),

and (F2(ω), P (2, ω) , D (2, ω)) with probability of 1−α. By construction, the high type

is fixed, and when α increases, the low type gets closer to the high type.

Lemma 4 There exists a unique cutoff α∗ such that RW
L ≥ x#

H if and only if α ≥ α∗.

Therefore, we can interpret the case of RW
L ≥ x#

H as similar types and R
W
L < x#

H

as distinct types.15 With similar types, the low-type designer’s equilibrium payoffRW
L

is already high, making the unconstrained optimal solution x#
H easier to violate Con-

straint (32), implying zero participation bonus. In contrast, with distinct types, the

low-type designer’s equilibrium payoff RW
L is low, making the unconstrained optimal

solution x#
H satisfy Constraint (32) automatically, implying strictly positive partici-

pation bonus and no need for randomization. Now we can develop more intuitions.

15When α∗ ≤ 0, only the case of similar types applies; when α∗ > 1, only the case of distinct types
applies.
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When qualities become more distinct, the low-type designer’s equilibrium payoff be-

comes lower and she has a stronger incentive to mimic. This requires the high-type

designer to introduce more distortion. Note that the marginal cost of a higher cutoff

is increasing and the marginal cost of a higher participation bonus is a constant. As

a result, when the low-type becomes too distinct, it is optimal to use a strictly par-

ticipation bonus. The reason why randomization may be necessary is consistent with

the optimality of partial disclosure in Bayesian persuasion literature. Randomization

maintains the low-type designer’s mimicking payoff, but can potentially increase the

high-type designer’s payoff. The roles of these three channels are summarized in the

following corollary.

Corollary 1 In the high-type designer’s mixed package above, disclosing ineffi cient

information always arises, and is thus essential. Providing a participation bonus is

a necessary supplement when the designer has distinct types, and randomization may

serve as a supplement when the designer has similar types. The two supplements do

not appear at the same time.

If general disclosure policies are allowed, a monotone binary partition can be re-

placed by an upper censorship in Kolotilin et al. (2017), or upper-censoring in Alonso

and Câmara (2016). With this interpretation, monotone binary partitions can be

ranked in terms of Blackwell informativeness: a higher cutoff means more Blackwell

informative. The modified concavification problem is on a function with a single vari-

able and it is easy to verify the uniqueness of the solution if we know the primitives.

The following example illustrate the effect of the closeness of types.

Example 1 Suppose P (θ, ω) = ω and D(θ, ω) = 0 as in the monopoly pricing prob-

lem. Let FH(v) = v2, FL (v) = αv2 + (1− α) v0.02, on the same support [0, 1] , and

µH = 0.5. We fix the high type, and increase the low type in terms of likelihood-ratio

dominance. The two types become closer when α increases. The two different cases are

divided according to α∗ = 0.45. As we can see in Figure 1, the cutoff for the monotone

binary partition remains constant until α∗ and then decreases, meaning that the infor-

mation disclosure becomes less informative and trade occurs more often. Meanwhile,
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Figure 1: The impact of closeness of qualities

the high-type monopoly’s expected payoff increases, along with the total surplus. How-

ever, the buyer’s expected payoff decreases. A higher α can also be interpreted as a

minimum quality standard. This implies that while a higher minimum quality standard

increases the monopoly’s payoff and total surplus, it hurts buyers.16

6 Robustness

While the RSW mechanism is the main focus in the literature of informed principal

with common values, in this section we carry out some robustness checks by comparing

it with other equilibrium concepts. Maskin and Tirole (1992) show that the RSW out-

come is a PBE outcome and is the unique one under a suffi cient condition. They also

show that the RSW mechanism always satisfies the intuitive criterion and establishes

its uniqueness under certain condition. One crucial assumption for achieving these

results in their paper is the sorting assumption. In our setup, the sorting assumption

fails. However, all of these desirable properties are preserved even without the sorting

assumption.17

16The comparative statics results hold more generally. Since this is not the main focus of the paper,

formal results are available upon request from the authors.
17Readers who regard RSW outcomes as the correct outcomes to examine can skip this section;

readers interested in technical details can find the proofs for Proposition 7 and Proposition 8 in

Appendix B.
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6.1 RSW outcome as PBE outcome

Proposition 7 The outcome of the RSW mechanism can be supported as a PBE

outcome. Moreover, if RW
L > x#

H and µ0
L > 1 + B̂′

(
RW
L

)
, the set of outcomes from

PBE equals that from the RSW mechanism.

As is common in general informed principal problems, the challenge of demon-

strating the first part of the proposition is that often the belief that makes a deviation

undesirable must be tailored to the particular deviation. In our model, when x#
H ≥ RW

L ,

this issue does not arise and a universal belief of certainty of low-type can make all

deviations undesirable. When x#
H < RW

L , while the issue arises, it turns out that the

RSW mechanism is interim effi cient relative to a non-degenerate belief, and we can

apply the well-known result of Theorem 1 in Maskin and Tirole (1992) directly. For

the second part of the proposition, Maskin and Tirole (1992) also show that if the

prior is such that the RSW mechanism is interim effi cient, then the set of outcomes

from PBE equals that from the RSW mechanism, which is met when the conditions

in the proposition hold.18

6.2 Intuitive equilibrium

When the suffi cient condition in Proposition 7 fails, multiple PBE outcomes may exist.

To select the equilibrium outcome, we impose the intuitive criterion introduced by Cho

and Kreps (1987). It requires that a reasonable off-equilibrium-path belief assigns zero

probability to those types who are strictly worse off than their equilibrium payoff.

The outcomes that survive the intuitive criterion are called intuitive outcomes. The

following proposition shows that the outcome of the RSW mechanism always survives

the intuitive criterion and is the unique outcome under certain condition.

Proposition 8 The outcome of the RSW mechanism survives the intuitive criterion.

Furthermore, with similar types, i.e., RW
L ≥ x#

H , the set of intuitive outcome coincides

with that from the RSW mechanism.

18We need to modify their proofs slightly to allow multiple dimensional action space.
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7 Applications and extensions

7.1 An application to Chen and Zhang (2020)

Chen and Zhang (2020) restrict to monopoly pricing. Furthermore, instead of allowing

arbitrary mechanisms, it is assumed that the seller makes a take-it-or-leave-it offer to

the buyer. A natural question is whether the seller can be better offwhen she can adopt

any mechanism. This question can be answered as a very special case of our general

model with P (θ, ω) = ω and D(θ, ω) = 0. Proposition 6 implies that this often causes

loss of generality. The following corollary provides a necessary and suffi cient condition

under which the RSW mechanism coincides with the unique intuitive equilibrium

identified in that paper.

Corollary 2 If and only if the designer’s types are similar and no randomization is

needed from the concavification problem, the unique intuitive equilibrium identified in

Chen and Zhang (2020) is robust to more general mechanisms.

7.2 Interpretation of the channels in applications

Recall the three channels for separating we have identified. Here we would connect

them to phenomenons in practice. Channel (C1) implies that high-type designers re-

veal more than effi cient information, which coincides with no disclosure in our setup.

In practice, it is rather common for designers to allow players to learn more infor-

mation: trial versions of software and video games, trailers for movies, information

sessions for procurement, campus visits for hiring assistant professors in economics,

etc. (C2) implies that high-type designers provide bonus to players for their learning.

In practice, it is common to see a cocktail party with a lottery following an infor-

mation session about new apartments presented by real estate agents, or small gifts

following trials in a tutorial market. Governments also provide various benefits to

participants in foreign investment information session. (C3) implies that high-type

designers randomize on packages, which can be interpreted as promotional strategies
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as in Gal-Or (1982), Narasimhan (1988), Sobel (1984) and Varian (1980). The package

with N−1 (x1) discloses more information and charges a higher price than the pack-

age with N−1 (x2). This is consistent with the practice in which products on sale are

often limited-time offers and consumers can learn only limited information about the

products.

When the designer has the full power to disclose information and choose mecha-

nisms, it may seem irrational to provide a bonus for trials and to adopt promotional

strategies. Our results provide a potential explanation for these scenarios: in order for

the high-type designer to separate from the low-type, bonuses for trials are necessary

when the designer’s types are distinct, and promotional strategies may be needed when

the designer’s types are similar.

7.3 Beyond binary alternatives: linear payoffs

When the alternatives are more than two, let K = {0, 1, · · · , K}. Given alternative

k, let P k(θ, ω), Dk (θ, ω), and T k(θ, ω) be the player’s return, the designer’s return,

and the total surplus, respectively. We assume that, ∀k ∈ K, P k (θ, ω) = P (θ, ω) k

and Dk (θ, ω) = D(θ, ω)k, which are both linear in k. The total surplus is then

T k (θ, ω) = T (θ, ω) k with T (θ, ω) = P (θ, ω) + D (θ, ω). The regularity conditions,

i.e., Definition 1, are now imposed on the highest alternative K. Let q(k, s) denote

the probability of choosing alternative k when the player reports s.

Proposition 9 With linear payoffs, in terms of the designer’s and the player’s ex-

pected payoffs given the designer’s type, it is without loss of generality to assume that

the designer only chooses between alternative 0 and K. The problem then reduces to

binary alternatives.

Note that the outcome equivalence here is weaker than that in Definition 3 since

two equivalent outcomes can potentially have different probabilities for implementing a

certain alternative. By letting q (s) =
∑K

k=1 q(k, s)k, the proof is similar to Proposition

2.
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8 Conclusion and discussion

Providing incentives and revealing information are two common practices through

which designers achieve their goals. However, when a designer also holds unverifiable

private information, her strategy itself could signal her private information. In this

paper, we place no restriction on what designers can do and provide a prediction for

the outcome by examining the RSW mechanism. We show that the low type achieves

her full-information outcome by disclosing effi cient information and implementing an

effi cient mechanism that leaves the player with zero surplus. In contrast, the high

type is forced to ineffi ciently disclose more information and sometimes to leave strictly

positive surplus to the player, or to randomize on packages in order to separate from

the low type. This outcome is robust.

Our results can be extended to allow for continuous type space of the designer

ordered by the likelihood-ratio dominance. The proof is tedious but essentially follows

a similar logic. We conjecture that a condition can be found to guarantee that local

incentive constraints are necessary and suffi cient. As a result, the problem for the

lowest type is the same as Problem PL; and the problem for all other types is similar

to Problem PH . In the RSW mechanism, the lowest type of designer achieves her

full information outcome. The other types (possibly) randomize on packages with a

monotone binary partition, a payment equal to the conditional expected return, and

a (possible) participation bonus.

One direction of future research is to allow multiple players. Bayesian persuasion

with multiple receivers (players) is also known as information design. In general, as

pointed out by Kamenica and Gentzkow (2011), ‘... the key simplifying step in our

analysis reducing the problem of finding an optimal signal to one of maximizing over

distributions of posterior beliefs does not apply’. While some progress has been made,

such as by Bergemann and Morris (2016,2019), Mathevet et al. (2020) and Taneva

(2019), it is generally diffi cult to characterize the optimal information disclosure ex-

plicitly, even when the sender has no private information.
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Another extension is to allow the player to have private information to begin with.

In cases where the designer does not hold private information, the question of how

to design optimal information disclosure and optimal mechanism jointly has received

significant attention recently for the selling problem. Krähmer (2020) offers an excel-

lent overview of the results. He shows that the conclusion relies on conditions. The

first condition is whether the designer has full or partial information control. Full

information control (FIC) means that the information that can be disclosed by the

designer fully identifies the player’s valuation, and the player’s initial private infor-

mation only affects his belief of the valuation. Otherwise, there is partial information

control (PIC). The second condition relates to whether the information controlled by

the designer is orthogonal to the player’s private information. Eso and Szentes (2007)

show that with PIC and an orthogonal structure, full information is optimal. Li and

Shi (2017) construct a discriminatory disclosure that improves on the full disclosure

with FIC and nonorthogonal structure. Krähmer (2020) further demonstrates that,

in fact, the first-best surplus can be extracted within Li and Shi’s framework. With

PIC, full surplus extraction can be achieved with “full rank”condition. The optimal

mechanism and information disclosure remain unknown when full surplus extraction

is not achievable. Adding the private information of the designer results in another

layer of complication, since now each type of designer needs to take into consideration

other types’incentive to mimic.

Finally, for each specific application beyond binary alternatives, while our linear

payoff structures can serve as a benchmark to provide simple answers, it is of partic-

ular interest to consider more details motivated by practical observations leading to

nonlinear payoff structures. These issues will be left for future investigation.

Appendix A: Omitted Proofs

Proof for Proposition 2

We first introduce the concept of feasible direct grand mechanism. Suppose the
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player’s belief is µH before seeing the designer’s package (π, γ), his interim belief after

will be updated according to Bayes’rule: ξ(π, γ, µH) = µHφH(π,γ)∑
θ µθφθ(π,γ)

.

Definition 6 A direct grand mechanism Φ = {φθ}θ=L,H is µH− feasible if and only if

Rθ(φθ) ≥ Rθ(φθ′),∀θ 6= θ′, (34)

[q(s)− q(ŝ)]V (ξ(π, γ, µH), s, π) ≥ t(s)− t(ŝ),∀s, ŝ, (35)∑
θ

µθUθ(Φ) ≥ 0. (36)

By the inscrutability principle of Myerson (1983) and the revelation principle,

any PBE outcome can be implemented by a µ0
H − feasible direct grand mechanism.

However, the reverse does not necessarily hold. Therefore, our proof is in two steps.

In step 1, we show that for any feasible direct grand mechanism in the original game,

there exists an outcome-equivalent feasible direct grand mechanism in the simplified

game, and vice versa. In step 2, we show that for any feasible direct grand mechanism

in the original game that can be supported as a PBE, its outcome-equivalent feasible

direct grand mechanism in the simplified game can be supported as a PBE, and vice

versa.

Step 1: The direction from the simplified game to the original game is straightfor-

ward, since any µ0
H − feasible direct grand mechanism in the simplified game is also

µ0
H − feasible in the original game. We show the opposite direction by construc-

tion. Suppose we have a µ0
H − feasible direct grand mechanism in the original game

{φθ(π, γ)}θ=L,H . Pick up an arbitrary package in the direct grand mechanism (π, γ),

we will replace it with a mixture among simplified packages constructed as follows.

The signal realization space for π is arbitrary and we can categorize the signals ac-

cording to their probabilities of choosing alternative 1. Suppose there are Q different

possible probabilities that can arise in the package, we can order them from low to high

according to q1 < q2 < · · · < qQ. By (35) , if two signal realizations result in the same

probabilities, say qi, they also result in the same payment for alternative 1, denoted

as ti. Now we can construct Q + 1 simplified packages recursively as follows. The 1st
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simplified package {π1, γ1} is defined as π1(s|ω) = 1, q1(s) = 1, t1 (s) = 0, I1 = t1 + I.

∀i ∈ {2, · · · , Q}, the ith simplified package {πi, γi} is defined as:

Statistical experiment : πi(s|ω) =
∑
q(s)≥qi

π(s|ω), πi(s|ω) = 1− πi(s|ω) (37)

Implemantation rule : qi(s) = 0, qi(s) = 1 (38)

Payment rule : ti(s) =
ti − ti−1

qi − qi−1

, ti (s) = 0, I i = t1 + I (39)

Finally, define Q+1th simplified package {πQ+1, γQ+1} as πQ+1(s|ω) = 1, qQ+1(s) = 0,

tQ+1 (s) = 0, IQ+1 = t1 + I. Note that the 1st simplified package uses signal s only

and the Q+ 1th one uses signal s only. Assign probability ιi to the simplified package

i, where

ιi =


q1 if i = 1

qi − qi−1 if 2 ≤ i ≤ Q

1− qQ if i = Q+ 1

. (40)

Replace each package (π, γ) with a mixture φπ,γ (π̃, γ̃) over simplified package (π̃, γ̃)

such that

φπ,γ (π̃, γ̃) =

 ιi if (π̃, γ̃) = (πi, γi)

0 otherwise
. (41)

We thus can construct φ′θ (π̃, γ̃) =
∫
φπ,γ (π̃, γ̃)φθ (π, γ) dπdγ. It remains to show that

it is µ0
H − feasible and outcome equivalent to {φθ(π, γ)}θ=L,H .

Since (π, γ) is µ0
H − feasible,

(qi − qi−1)V (ξ(π, γ, µ0
H), si, π) ≥ ti − ti−1, (42)

(qi−1 − qi)V (ξ(π, γ, µ0
H), si−1, π) ≥ ti−1 − ti. (43)

These together imply that

V (ξ(π, γ, µ0
H), si−1, π) ≤ ti − ti−1

qi − qi−1

≤ V (ξ(π, γ, µ0
H), si, π)

⇔ V (ξ(π, γ, µ0
H), si−1, π) ≤ t(s̄) ≤ V (ξ(π, γ, µ0

H), si, π). (44)
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We also have

V (ξ(π, γ, µ0
H),s, πi)

=

∫ ω
ω

{
ξ(π, γ, µ0

H)P (H,ω)πi(s|ω)fH(ω)+ [1− ξ(π, γ, µ0
H)]P (L, ω) πi(s|ω)fL(ω)

}
dω∫ ω

ω

{
ξ(π, γ, µ0

H)πi(s|ω)fH(ω)+ [1− ξ(π, γ, µ0
H)]πi(s|ω)fL(ω)

}
dω

=
∑
q(s)≥qi

V (ξ(π, γ, µ0
H), s, π)∑

q(s)≥qi

∫ ω
ω
{ξ(π, γ, µ0

H)π(s|ω)fH(ω) + [1− ξ(π, γ, µ0
H)]π(s|ω)fL(ω)} dω

∗
∫ ω

ω

{
ξ(π, γ, µ0

H)π(s|ω)fH(ω) +
[
1− ξ(π, γ, µ0

H)
]
π(s|ω)fL(ω)

}
dω

≥
∑
q(s)≥qi

V (ξ(π, γ, µ0
H), si, π)∑

q(s)≥qi

∫ ω
ω
{ξ(π, γ, µ0

H)π(s|ω)fH(ω) + [1− ξ(π, γ, µ0
H)] π(s|ω)fL(ω)} dω

∗
∫ ω

ω

{
ξ(π, γ, µ0

H)π(s|ω)fH(ω) +
[
1− ξ(π, γ, µ0

H)
]
π(s|ω)fL(ω)

}
dω

= V (ξ(π, γ, µ0
H), si, π). (45)

Similar to (45) , V (ξ(π̃, γ̃, µ0
H), s, π̃) is a linear combination of V (ξ(π, γ, µ0

H), s, π̃). By

the construction of (π̃, γ̃), (35) holds for ξ(π, γ, µ0
H), and therefore, (35) holds for

ξ(π̃, γ̃, µ0
H).

For the expected selling probability, we have:∫ ω

ω

∑
i=1,···,Q+1

ιi
[
πi(s|ω)qi(s) + πi(s|ω)qi(s)

]
fθ (ω) dω

=

∫ ω

ω

∑
i=1,···,Q+1

ιiπ
i(s|ω)fθ (ω) dω=

∫ ω

ω

∑
i=1,···,Q

∑
q(s)≥qi

ιiπ (s|ω) fθ (ω) dω

=

∫ ω

ω

∑
s

 ∑
q(s)≥qi

ιi

 π (s|ω) fθ (ω) dω =

∫ ω

ω

∑
s

π(s|ω)q(s)f θ (ω) dω. (46)

For the expected payment, we have:∑
i=1,···,Q+1

ιi

{∫ ω

ω

πi(s|ω)P (θ, ω) qi(s)fθ (ω) dω −
[∫ ω

ω

πi(s|ω)fθ (ω) dω

]
ti (s)− I i

}
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= q1

∫ ω

ω

P (θ, ω) fθ (ω) dω − t1 − I

+
∑

i=2,···,Q
ιi

{∫ ω

ω

πi(s|ω)
[
P (θ, ω)− ti (s)

]
fθ (ω) dω

}

= q1

∫ ω

ω

P (θ, ω) fθ (ω) dω − I

+
∑
s

∫ ω

ω

π (s|ω) {[q (s)− q1]P (θ, ω)− t (s)} fθ (ω) dω

=
∑
s

∫ ω

ω

π (s|ω) [q(s)P (θ, ω)− t (s)] fθ (ω) dω − I. (47)

Similarly the designer’s expected payoff is the same. Therefore, for any θ, U (θ, φ′θ) =

U (θ, φθ), Rθ′ (φ
′
θ) = Rθ′ (φθ) . As a consequence, (34) and (36) hold, and the con-

structed simplified direct grand mechanism is µ0
H − feasible.

Step 2: Consider a µ0
H − feasible direct grand mechanism Φ = {φθ}θ=L,H in the

original game and a µ0
H − feasible direct grand mechanism Φ′ = {φ′θ}θ=L,H in the

simplified game such that Φ and Φ′ are outcome equivalent. Since any direct grand

mechanism in the simplified game is also a direct grand mechanism in the original

game, the set of off-equilibrium-path strategy in the simplified game is a subset of

union of off-equilibrium-path strategy in the original game and the outcome-equivalent

grand mechanisms to Φ′. Therefore, if Φ = {φθ}θ=L,H can be supported as a PBE in

the original game, Φ′ = {φ′θ}θ=L,H can also be supported as a PBE in the simplified

game. It remains to show the direction from the simplified game to the original game.

We prove it by contradiction. Suppose in contrary, Φ′ can be supported as a PBE in

the simplified game, but Φ cannot be supported as a PBE in the original game. Then

there exists an off-equilibrium-path direct grand mechanism Ψ in the original game

such that a certain type of designer, say θ, has incentive to deviate. For any belief µH ,

by the revelation principle, Ψ is outcome-equivalent to a µH − feasible direct grand

mechanism denoted as Φ1 (Ψ, µ) =
{
φ1
θ (Ψ, µ)

}
θ=L,H

. Thus Rθ

(
φ1
θ (Ψ, µ)

)
> Rθ (φθ) .

By arguments similar to Step 1, there exists an outcome-equivalent µH − feasible

direct grand mechanism denoted as Φ2 (Ψ, µ) in the simplified game. This implies
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Rθ

(
φ2
θ (Ψ, µ)

)
= Rθ

(
φ1
θ (Ψ, µ)

)
> Rθ (φθ) = Rθ (φ′θ) . As a result, the type-θ designer

has incentive to deviate in the simplified game, a contradiction. Q.E.D.

Proof for Proposition 3

Let {φWθ }θ=L,H be an RSW mechanism and {φ∗θ}θ=L,H be a solution to the problem

Pθ.

Step 1: we show that {φ∗θ}θ=L,H is a safe mechanism. Since {φ∗θ}θ=L,H satisfies

the constraints in the successive problems, we only need to show that RH (φ∗H) ≥

RH (φ∗L). Since RH (φ∗H) solves Problem PH , it is suffi cient to show that φ
∗
L satisfies

the constraints in Problem PH . First, it is obvious that (18) is satisfied since it holds

with equality. Second, Problem PL is equivalent to the full information benchmark in

Proposition 1. Therefore, φ∗L (π, γ) > 0 only if q(s) = 1,∀s, with payment t(s) + I =∫ ω
ω
P (L, ω) fL(ω)dω,∀s. Thus, (19) becomes 0 ≥ 0, which is satisfied. Finally, (20) is

satisfied since

U(H,φ∗L)

=

∫ [∫ ω

ω

P (H,ω) fH(ω)dω −
∫ ω

ω

P (L, ω) fL(ω)dω + I − I
]
φ∗L (π, γ) dπdγ

=

∫ ω

ω

P (H,ω) fH(ω)dω −
∫ ω

ω

P (L, ω) fL(ω)dω ≥ 0. (48)

Step 2: we show that φWθ satisfies constraints of Problem Iθ. First, by Definition

4 and 5, φWL satisfies all constraints in Problem PL. Second, for any safe mechanism

{φL, φWH }, by Definition 5, RL(φWH ) ≤ RL(φL) ≤ RL(φWL ) ≤ RL(φ∗L). Thus, φWH satisfies

constraint (18). By Definition 5, φWH satisfies (19), (20) and therefore all constraints

in Problem PH .

Step 1 implies Rθ(φ
W
θ ) ≥ Rθ(φ

∗
θ), and Step 2 implies Rθ(φ

W
θ ) ≤ Rθ(φ

∗
θ). Therefore

Rθ(φ
W
θ ) = Rθ(φ

∗
θ) and the RSW mechanism can be solved by Problem PL and PH .

Q.E.D.

Proof for Proposition 4

We first show that, for any RSW mechanism in the original game, there exists

an outcome-equivalent RSW mechanism in the simplified game, and vice versa. It is
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suffi cient to show that for any safe mechanism in the original game, there exists an

outcome-equivalent safe mechanism in the simplified game, and vice versa. It is similar

to Step 1 in the proof for Proposition 2.19 The direction from the simplified game to

the original game is straightforward since any safe mechanism in the simplified game

is also safe in the original game. The opposite direction is shown by construction.

By definition, a RSW mechanism is µH − feasible for any µH . With any µH , we can

construct an outcome-equivalent µH − feasible mechanism in the simplified game as

in Step 1 in the proof for Proposition 2. Since this construction is independent of µH ,

the constructed mechanism is the same and is µH − feasible for any µH . Then by

definition, the constructed mechanism is safe.

Now we show that we can further restrict no randomization on I. Let {φ∗θ}θ=L,H
be a solution to the successive problem Pθ. We have

U (θ, φ∗θ) =

∫
u (θ, π, γ)φ∗θ (π, γ) dπdγ (By (6) )

=

∫ [∫ ω

ω

π (s1|ω)P (θ, ω) fθ (ω) dω − g (θ, s1, π) t (s1)− I
]
φ∗θ (π, γ) dπdγ

=

∫ [∫ ω

ω

π (s1|ω)P (θ, ω) fθ (ω) dω − g (θ, s1, π) t (s1)

]
φ∗θ (π, γ) dπdγ

−
∫
Iφ∗θ (π, γ) dπdγ. (49)

Similarly, Rθ′ (φ
∗
θ) =

∫
g (θ′, s1, π) t (s1)φ∗θ (π, γ) dπdγ +

∫
Iφ∗θ (π, γ) dπdγ. That is, I

matters only in expectation for the player’s and the designer’s expected payoff. Ob-

viously, I does not affect the allocation probability and the player’s IC constraint.

Thus, if we replace every I in the mixed package with its expectation, it is outcome-

equivalent. Q.E.D.

Proof for Lemma 1

We first establish a useful lemma which will be used several times throughout the

proofs.20

19We do not need Step 2 since for RSW mechanism we do not need to consider off-equilibrium-path

beliefs.
20The proof is similar to Lemma 7 of Chen and Zhang (2020). For those who are interested in the
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Lemma 5 Consider a simplified package (π, γ) that satisfies the player’s incentive

constraint under belief ξ ∈ (0, 1], i.e., V (ξ, s2, π) ≤ t ≤ V (ξ, s1, π).

(a) the statistical experiment is not a monotone binary partition, i.e., π /∈ ΠM .

(b) for statistical experiment not equal to π(ω) or π(ω), the payment when im-

plementing alternative 1 is strictly less than the conditional expected return, i.e.,

t̄ < V (H, s1, π).

If at least one of the above two conditions holds, we can construct the following

simplified package (π′, γ′) with π′ = π(y′), t̄′ =
∫ ω
y′ P (H,ω)fH(ω)dω

1−FH(y′) , I ′ = −u (H, π, γ) ,

where y′ ∈ (ω, ω) is the unique solution to∫ ω

y′
T (H,ω)fH(ω)dω =

∫ ω

ω

π(s1|ω)T (H,ω)fH(ω)dω. (50)

Then rH(π′, γ′) = rH(π, γ), u (H, π′, γ′) = u (H, π, γ) , rL(π′, γ′) < rL(π, γ).

Suppose the high-type designer’s mixed package in RSW mechanism φWH random-

izes on packages where at least one of (i) and (ii) does not hold. It is equivalent to

the condition that at least one of (a) and (b) hold, and therefore Lemma 5 applies.

By setting ξ = 1 in Lemma 5, we can construct (π′, γ′) such that rL(π′, γ′) < rL(π, γ),

rH(π′, γ′) = rH(π, γ), u (H, π′, γ′) = u (H, π, γ) . Consider (π′′, γ′′) with π′′ = y′ − ε,

t̄′′ =
∫ ω
y′−ε P (H,ω)fH(ω)dω

1−FH(y−ε) , I ′′ = I ′. Since both rL(π′, γ′) and rH(π′, γ′) are continuous

and strictly decreasing in y′, there exists a ε > 0 such that rL(π (y′ − ε) , γ′′) <

rL(π (y′ − ε) , γ′′), rH(π (y′ − ε) , γ′′) > rH(π, γ), and u (H, π (y′ − ε) , γ′′) = u (H, π, γ) .

Obviously (π′′, γ′′) satisfies the player’s IC. If we replace (π, γ) with (π′′, γ′′) in φWH ,

the new mixed package satisfies all the constraints in Problem PH and yields a strictly

higher payoff for the high-type designer, a contradiction to φWH being optimal. The

new mixed package could have different participation fees across different packages.

However, similar to Proposition 3, we can replace all the participation fees with its

expectation. Q.E.D.

Proof for Lemma 2

We prove by contradiction. Suppose (σH(y), IH) is a solution to Problem PH and

U (H,φH) is the player’s payoff. Suppose RL (σH , IH) < RW
L . There are two cases. In

proofs, please refer to Appendix B.
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case 1, σH(ω) = 1. Therefore, RL (σH , IH) = IH +
∫ ω
ω
D (L, ω) fL (ω) dω < RW

L . Thus

IH < RW
L −

∫ ω

ω

D (L, ω) fL (ω) dω =

∫ ω

ω

P (L, ω) fL (ω) dω

<

∫ ω

ω

P (H,ω) fH (ω) dω (51)

⇒ U (H,φH) =

∫ ω

ω

P (H,ω) fH (ω) dω − IH > 0 (52)

Thus, we can increase I ′H = IH + ε for some ε > 0 such that RL (σH , I
′
H) ≤ RW

L and

RH (σH , I
′
H) > RH (σH , I

′
H) , which is a contradiction. In case 2, σH(ω) < 1. For π (y)

with y > ω and some ε > 0, we can find some π′ = π (y − ε) , t′ =
∫ ω
y−ε P (H,ω)fH(ω)dω

1−FH(y−ε)

such that rL
(
π′, t

′)
< rL

(
π, t
)

+ RW
L − RL (σH , IH). Define ρ (y) = y − ε for y > ω

and ρ (ω) = ω. Construct: σ′H(y′) =
∫
ρ(y)=y′ σH(y)dy and

I ′H =

∫
y=ω

∫ ω

ω

P (H,ω) fH (ω) dωσH (y) dy − U (H,φH) (53)

Therefore, the player’s payoff is U (H,φH) . The high-type designer’s payoff:

RH (σ′H , I
′
H) =

∫ ω

ω

∫ ω

y

T (H,ω) fH (ω) dωσ′H(y)dy − U (H,φH)

=

∫ ω

ω

∫ ω

y

T (H,ω) fH (ω) dω

∫ ω

ρ(y′)=y

σH(y′)dy′dy − U (H,φH)

>

∫ ω

ω

∫ ω

y′
T (H,ω) fH (ω) dω

∫ ω

ρ(y′)=y

σH(y′)dy′dy − U (H,φH)

=

∫ ω

ω

∫ ω

y′
T (H,ω) fH (ω) dωσH(y′)dy′ − U (H,φH) = RH (σH , IH) (54)

Similarly,

RL (σ′H , I
′
H) < RL (σH , IH) +

∫ ω

ω

[
RW
L −RL (σH , IH)

]
σ′H(y)dy

< RL (σH , IH) +RW
L −RL (σH , IH) = RW

L . (55)

Contradiction. Q.E.D.
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Proof for Lemma 3

It remains to show that N (y) is strictly decreasing. Take derivative of N (y) with

respect to y, we have N ′(y) = −T (H, y) fH (y)n(y), where

n(y) =

[
fL(y)

fH(y)
− 1− FL (y)

1− FH (y)

] ∫ ω
y

[P (H,ω) +D (H, y)] fH(ω)dω

T (H, y) [1− FH (y)]

+
D (L, y)−D (H, y)

T (H, y)

fL(y)

fH(y)
+

1− FL (y)

1− FH (y)
. (56)

Since fL(y)
fH(y)

≥ 1−FL(y)
1−FH(y)

, P (H,ω) + D (H, y) ≥ T (H, y) ≥ 0 for any ω ≥ y, D (H, y) ≤

D (L, y) , we have n(y) > 0. Therefore, N (y) is strictly decreasing in y. Q.E.D.

Proof for Proposition 6

It remains to show that there is effi ciency loss. First, take derivative of M (y) at

y = ω :

M ′(ω) = [fL(ω)− fH (ω)]

∫ ω

ω

P (H,ω)fH(ω)dω −D(H,ω)fH(ω) +D(L, ω)fL(ω)

= [fL(ω)− fH (ω)]

∫ ω

ω

[P (H,ω) +D(H,ω)] fH(ω)dω+fL(ω) [D(L, ω)−D(H,ω)]

> [fL(ω)− fH (ω)]

∫ ω

ω

[P (H,ω) +D(H,ω)] fH(ω)dω >0 (57)

Therefore, x#
H < N(ω). Second,

N (ω) =

∫ ω

ω

P (H,ω)fH(ω)dω+

∫ ω

ω

D(L, ω)fL(ω)dω

>

∫ ω

ω

P (L, ω)fL(ω)dω+

∫ ω

ω

D(L, ω)fL(ω)dω = RW
L . (58)

Q.E.D.

Proof for Lemma 4

It is equivalent to show that there exists a unique cutoff α∗ ∈ [0, 1] such that

y#
H ≥ y∗H if and only if α ≥ α∗.

y#
H is independent of α since M (y) equals

(1− α)

{∫ ω

y

[
F2(y)− F1(y)

1− F1(y)
P (1, ω) +D (1, ω)

]
f1(ω)dω −

∫ ω

y

D (2, ω) f2(ω)dω

}
(59)
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Now we will show that y∗H is strictly decreasing in α ∈ [0, 1). Recall that y∗H is

defined by∫ ω

y∗H

[
1− Fα (y∗H)

1− F1 (y∗H)
P (1, ω) + αD (1, ω)

]
f1(ω)dω + (1− α)

∫ ω

y∗H

D (2, ω) f2(ω)dω

= α

∫ ω

ω

T (1, ω) f1(ω)dω + (1− α)

∫ ω

ω

T (2, ω) f2(ω)dω, (60)

Applying the Implicit Function Theorem,

dy∗H
dα

= − 1

N ′ (y∗H)
{
∫ ω

y∗H

[
F2(y∗H)− F1(y∗H)

1− F1(y∗H)
P (1, ω) +D(1, ω)

]
f1(ω)dω

−
∫ ω

y∗H

D(2, ω)f2(ω)dω−
∫ ω

ω

[T (1, ω)f1(ω)− T (2, ω) f2(ω)] dω}

= − 1

N ′ (y∗H)
{
∫ ω

y∗H

T (1, ω)f1(ω)dω −
∫ ω

ω

T (1, ω)f1(ω)dω

+
RW
L −α

∫ ω
ω
T (1, ω)f1(ω)dω

1− α −
N (y∗H)− α

∫ ω
y∗H
T (1, ω)f1(ω)dω

1− α }

= −

∫ ω
y∗H
T (1, ω)f1(ω)dω −

∫ ω
ω
T (1, ω)f1(ω)dω

N ′ (y∗H) (1− α)
(By RW

L = N (y∗H) )

> 0 (By N ′ (y∗H) < 0, y∗H > ω) (61)

Therefore, dy
∗
H

dα
is strictly negative.

As a result, with y∗H being constant and y#
H being strictly decreasing, they can

cross with each other at most once. Q.E.D.

Appendix B: Proofs for Robustness

Proof for Proposition 7

By Proposition 1, it is suffi cient to consider the simplified game. The proposition

has two parts. Part 1: The outcome of the RSW mechanism can be supported as

a PBE outcome in the simplified game. Part 2: Under the conditions, the set of

outcomes from PBE in the simplified game equals that from RSW mechanism.
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Part 1:

There are two cases. In case 1, x#
H ≥ RW

L and we will construct a belief to support

both types proposing the RSW mechanism as a PBE. In case 2, x#
H < RW

L , and we

will apply Theorem 1 in Maskin and Tirole Maskin and Tirole (1992) to show it.

In case 1, x#
H ≥ RW

L . We assign off-equilibrium-path beliefs µH = 0 such that the

designer’s type is believed to be low for sure. It is suffi cient to show that, for any

0− feasible direct grand mechanism Φ = {φθ}θ=L,H , Rθ (φθ) ≤ RW
θ . Since the sum of

the designer’s payoff and the player’s payoff cannot exceed the effi cient welfare:

RL (φL) + U (L, φL) ≤
∫ ω

ω

T (L, ω) fL(ω)dω

⇒ RL (φL) ≤
∫ ω

ω

T (L, ω) fL(ω)dω − U (L, φL)

≤
∫ ω

ω

T (L, ω) fL(ω)dω = RW
L . (62)

Thus, we have RL(φL) ≤ RW
L . If

RH (φH) < RL(φL)−
∫ ω

ω

D (L, ω) fL(ω)dω +

∫ ω

ω

D (H,ω) fH(ω)dω, (63)

then

RH (φH) < RW
L −

∫ ω

ω

D (L, ω) fL(ω)dω +

∫ ω

ω

D (H,ω) fH(ω)dω

= RW
L +B (N (ω)) < RW

L +B
(
x#
H

)
= RW

H (64)

and the proof is finished. Otherwise, when (63) fails, that is,

RH (φH) ≥ RL(φL)−
∫ ω

ω

D (L, ω) fL(ω)dω +

∫ ω

ω

D (H,ω) fH(ω)dω. (65)

we need to apply the following lemma:

Lemma 6 Suppose a µH − feasible mechanism Φ satisfies (65) . Then there exists a

µH − feasible mechanism Φ′ such that:

(i) the low-type designer’s mixed package only randomizes on packages where the

statistical experiment is no disclosure π (ω) ;
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(ii) the high-type designer’s mixed package only randomizes on packages where the

statistical experiment is a monotone binary partition π (y) with y ∈ [ω, ω] and for

statistical experiment not equal to π(ω) or π(ω), the payment for selling equals the

conditional expected valuation, i.e., t̄ = V (H, s1, π);

(iii) RL(φ′L) = RL(φL), RH(φ′H) = RH(φH), U(L, φ′L) ≥ U(L, φL), U(H,φ′H) =

U(H,φH).

Proof. The proof is by construction. First, construct the low-type designer’s mixed

package φ′L
(
π (ω) , γL

)
= 1, where tL (s1) = 0, IL = RL(φL). That is, (i) in the lemma

holds. Therefore, the low-type designer’s IC constraint holds. Moreover,

RL(φ′L) = RL(φL) (66)

RH(φ′L) = RL(φL). (67)

and

U (L, φ′L) =

∫ ω

ω

T (L, ω) fL(ω)dω −RL(φ′L)

≥ [U (L, φL) +RL(φL)]−RL(φL) = U (L, φL) (68)

Second, we construct the high-type designer’s mixed package in the following two

steps. In step 1, consider (π, γ) with interim belief ξ̂ ∈ (0, 1]. Denote the function

ρ : Π×Γ→ Π×Γ as follows. There are two cases. In case 1, π = π(ω) or π(ω). Then

let ρ (π, γ) = (π, γ). In case 2, π 6= π(ω) or π(ω). We apply Lemma 5 to construct

(π′, γ′) where for some y′, π′ = π (y′) ,

t′ (s1) =

∫ ω
y′ P (H,ω) fH (ω) dω

1− FH (y′)
, I ′ = −u (H, π, γ) , (69)

such that

rL(π′, γ′) ≤ rL(π, γ), (70)

rH(π′, γ′) = rH(π, γ), (71)

u (H, π′, γ′) = u (H, π, γ) . (72)
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Let ρ (π, γ) = (π′, γ′). In step 2, construct

φ′H(π′, γ′) =

∫
ρ(π,γ)=(π′,γ′)

φH(π, γ)dπdγ. (73)

Therefore, φ′H satisfies (ii) in the lemma. Moreover,

RH(φ′H) =

∫
rH (π′, γ′)φ′H(π′, γ′)dπ′dγ′

=

∫
rH (π′, γ′)

∫
ρ(π,γ)=(π′,γ′)

φH(π, γ)dπdγdπ′dγ′ =

∫
rH (ρ (π, γ))φH(π, γ)dπdγ

=

∫
π=π(ω) or π(ω)

rH (π, γ)φH(π, γ)dπdγ +

∫
π 6=π(ω) or π(ω)

rH (ρ (π, γ))φH(π, γ)dπdγ

=

∫
π=π(ω) or π(ω)

rH (π, γ)φH(π, γ)dπdγ +

∫
π 6=π(ω) or π(ω)

rH (π, γ)φH(π, γ)dπdγ

= RH(φH). (74)

where second last equality follows (71). Similarly,

RL(φ′H) ≤ RL(φH), (75)

U (H,φ′H) = U (H,φH) . (76)

(68) and (76) show that the player’s participation constraint holds. By (67) and (74),

RH(φ′H) = RH(φH) ≥ RL(φL) = RH(φ′L), (77)

and therefore the high-type designer’s IC constraint holds. (66) and (75) show that

the low-type designer’s IC constraint holds.

This lemma shows that there exists a 0− feasible mechanism Φ′ = {φ′θ}θ=L,H and

a probability measure on x ∈ [N(ω), N(ω)], κ′H(x) such that RL(φ′L) = RL(φL) ≤ RW
L ,

RH(φH) = RH (φ′H) = RL (φ′H) +

∫ N(ω)

N(ω)

B (x)κ′H(x)dx

≤ RL (φ′H) +

∫ N(ω)

N(ω)

B
(
x#
H

)
κ′H(x)dx (By definition of x#

H)

= RL (φ′H) +B
(
x#
H

)
≤ RL (φ′L) +B

(
x#
H

)
(By the low-type designer’s IC constraint)

≤ RW
L +B

(
x#
H

)
= RW

H , (78)
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We are done.

In case 2, x#
H < RW

L . Suppose ΦW = {φθ}θ=L,H is the RSW mechanism. To apply

Theorem 1 of Maskin and Tirole Maskin and Tirole (1992), it is suffi cient to show

that ΦW is interim effi cient relative to some belief µH ∈ (0, 1) such that the designer’s

type is high with probability of µH . That is, there exists no other µH − feasible

grand mechanism Φ that satisfies (1) Rθ (φθ) ≥ RW
θ with inequality strictly satisfied

for at least one type, and (2) µHU (H,φH) + (1− µH)U (L, φL) ≥ µHU
(
H,φWH

)
+

(1− µH)U
(
L, φWL

)
. We will show that such µH > 0 exists if

µH + B̂′ (x) |x=RWL
< 0. (79)

Since x#
H < RW

L , B̂
′ (x) |x=RWL

< 0 and therefore (79) is well specified for µH > 0.

Since x#
H < RW

L , U
(
θ, φWθ

)
= 0, and therefore condition (2) is redundant for any

µH − feasible mechanism Φ. It is suffi cient to show that, for any µH > 0 that satisfies

(79) and any µH − feasible mechanism Φ, Rθ (φθ) ≥ RW
θ implies that Φ is the RSW

mechanism. There are three steps.

Step 1: We prove by contradiction that (65) holds. Suppose in contrary, (63) holds.

Since the sum of the designer’s payoff cannot exceed the effi cient welfare, i.e.,

µHRH(φH) + (1− µH)RL(φL)

≤ µH

∫ ω

ω

T (H,ω) fH(ω)dω + (1− µH)

∫ ω

ω

T (L, ω) fL(ω)dω. (80)

Therefore,

RH(φH)

≤ µH

∫ ω

ω

T (H,ω) fH(ω)dω + (1− µH)

∫ ω

ω

T (L, ω) fL(ω)dω

− (1− µH)

[∫ ω

ω

D (L, ω) fL(ω)dω −
∫ ω

ω

D (H,ω) fH(ω)dω

]
= µH [N (ω)] + B̂ (N (ω)) + (1− µH)RW

L (81)

< µHR
W
L + B̂

(
RW
L

)
+ (1− µH)RW

L (82)

= RW
L + B̂

(
RW
L

)
= RW

H , (83)

46



which contradicts that RH(φH) ≥ RW
H . (81) follows

B̂ (N (ω)) = B (N (ω)) =

∫ ω

ω

D (H,ω) fH(ω)dω −
∫ ω

ω

D (L, ω) fL(ω)dω, (84)

and RW
L =

∫ ω
ω
T (L, ω) fL(ω)dω. (82) follows the following claim:

Claim 1 If x#
H < RW

L and (79) holds, µHx+ B̂ (x) is strictly decreasing in x ≥ RW
L .

Proof. (79) implies that
∂[µHx+B̂(x)]

∂x
|x=RWL

< 0. By definition of B̂ (·), ∂
2[µHx+B̂(x)]

∂x2
=

∂2B̂(x)
∂x2

≤ 0. Thus, for any x > RW
L ,

∂
[
µHx+ B̂ (x)

]
∂x

≤
∂
[
µHx+ B̂ (x)

]
∂x

|x=RWL
< 0. (85)

Step 2: We will show by contradiction that U (H,φH) = 0. First, since the sum of

the designer’s payoff and the player’s payoff cannot exceed the effi cient welfare,

U (L, φL)+RL(φL) ≤
∫ ω

ω

T (L, ω) fL(ω)dω = RW
L ⇒ U (L, φL) ≤ RW

L −RL(φL). (86)

By the player’s participation constraint,

µHU (H,φH) + (1− µH)U (L, φL) ≥ 0

⇒ U (H,φH) ≥ − (1− µH)U (L, φL)

µH
≥

(1− µH)
[
RL(φL)−RW

L

]
µH

≥
(1− µH)

[
RL(φL)−RW

L

]
µH

≥ 0. (87)

Second, suppose in contrary, U (H,φH) > 0. Given that RL(φL) ≥ RW
L , and (65) , we

will show that the high-type designer’s equilibrium payoff is lower than RW
H , which

contradicts that RH(φH) ≥ RW
H . With (65) , we can apply Lemma 6 to construct

a µH− feasible mechanism Φ′ = {φ′θ}θ=L,H such that RL(φ′L) = RL(φL) ≥ RW
L ,

RH(φ′H) = RH(φH), and there exists a probability measure on cutoffs y ∈ [0, 1],

σ′H (y) , with

RH (φ′H) + U (H,φ′H) =

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′H (y) dy, (88)

RL (φ′H) + U (H,φ′H) =

∫ ω

ω

N (y)σ′H (y) dy. (89)
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We will show that RH (φ′H) < RW
H . There are two cases. In case 1,

∫ 1

0
N (y)σ′H (y) dy

≤ RW
L . Therefore, σ

′
H (y) and I ′H = 0 is a candidate solution to Problem PH . By the

maximization of RW
H ,∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′H (y) dy ≤ RW
H

⇒ RH (φ′H) =

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′H (y) dy − U (H,φ′H)

<

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′H (y) dy (By U (H,φ′H) > 0)

≤ RW
H . (90)

In case 2,
∫ ω
ω
N (y)σ′H (y) dy > RW

L . (88) implies that

RH (φ′H) =

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′H (y) dy − U (H,φ′H)

=

∫ ω

ω

[N (y) +B (N (y))]σ′H (y) dy − U (H,φ′H) (By definition of N (y) and B (x) )

=

∫ ω

ω

N (y)σ′H (y) dy +

∫ ω

ω

B (N (y))σ′H (y) dy − U (H,φ′H)

≤
∫ ω

ω

N (y)σ′H (y) dy +

∫ ω

ω

B̂ (N (y))σ′H (y) dy − U (H,φ′H) (B (x) ≤ B̂ (x) )

≤
∫ ω

ω

N (y)σ′H (y) dy + B̂

(∫ ω

ω

N (y)σ′H (y) dy

)
− U (H,φ′H) . (91)

The last inequality follows that B̂ (x) is concave by definition. By (87),

U (H,φ′H) ≥
(1− µH)

[
RL(φ′L)−RW

L

]
µH

≥
(1− µH)

[
RL(φ′H)−RW

L

]
µH

=
(1− µH)

[∫ ω
ω
N (y)σ′H (y) dy − U (H,φ′H)−RW

L

]
µH

(By (89) )

⇔ U (H,φ′H) ≥ (1− µH)

[∫ ω

ω

N (y)σ′H (y) dy −RW
L

]
. (92)

Combine (91) and (92) ,

RH (φ′H) ≤
∫ ω

ω

N (y)σ′H (y) dy + B̂

(∫ ω

ω

N (y)σ′H (y) dy

)
− (1− µH)

[∫ ω

ω

N (y)σ′H (y) dy −RW
L

]
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= µH

∫ ω

ω

N (y)σ′H (y) dy + B̂

(∫ ω

ω

N (y)σ′H (y) dy

)
+ (1− µH)RW

L

< µHR
W
L + B̂

(
RW
L

)
+ (1− µH)RW

L (93)

= RW
L + B̂

(
RW
L

)
= RW

H . (94)

(93) follows Claim 1 and that
∫ ω
ω
N (y)σ′H (y) dy > RW

L . To conclude, in both cases,

RH (φ′H) < RW
H , which contradicts RH(φ′H) ≥ RW

H .

Step 3: The following Lemma 7 shows thatΦ is the RSWmechanism sinceRθ(φθ) ≥

RW
θ and U (H,φH) = 0. Therefore, ΦW is interim effi cient relative to some belief

µH ∈ (0, 1) . Then by the Theorem 1 of Maskin and Tirole (1992), the outcome of the

RSW mechanism can be supported as a PBE outcome.

Lemma 7 Suppose Φ = {φθ}θ=L,H is a µH − feasible mechanism for some µH > 0.

If Rθ(φθ) ≥ RW
θ , and U(H,φH) = 0, then Φ is the RSW mechanism.

Proof. Since Rθ(φθ) ≥ RW
θ , it is suffi cient to show that Φ is a safe mechanism. By the

player’s participation constraint, U(H,φH) = 0 implies that U (L, φL) ≥ 0. Therefore,

U (L, φL) +RL (φL) ≥ RW
L , (95)

U (L, φL) +RL (φL) =

∫ [∫ ω

ω

π (s1|ω)T (L, ω)fL(ω)dω

]
φL(π, γ)dπdγ

≤
∫ [∫ ω

ω

T (L, ω)fL(ω)dω

]
φL(π, γ)dπdγ (By π (s1|ω) ≤ 1,∀ω)

=

∫ ω

ω

T (L, ω)fL(ω)dω (By
∫
φL(π, γ)dπdγ = 1) (96)

with equality holds only if
∫
φL(π (ω) , γ)dγ = 1. Combined with (95) ,

∫
φL(π (ω) , γ)dγ =

1. Thus for any (π, γ) that φL assigns positive weight, only signal s1 is sent, and there-

fore, the player’s IC constraint holds. Therefore Φ is a safe mechanism.

Part 2:

Consider any µ0
H − feasible direct grand mechanism Φ = {φθ}θ=L,H that imple-

ments a PBE outcome. First, the following Lemma 8 shows that the equilibrium payoff

Rθ(φθ) ≥ RW
θ .
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Lemma 8 In any PBE, the type-θ designer’s payoff is at least RW
θ .

Proof. Since an RSW mechanism ΦW is a safe mechanism, type-θ designer’s payoff

is RW
θ regardless of the player’s belief. Suppose on-equilibrium-path, type-θ designer

proposes ΦW . Then type-θ designer’s equilibrium payoff is RW
θ . And type-θ

′ designer’s

payoff is at least RW
θ′ . If ΦW is off-equilibrium-path, type-θ designer’s payoff is at least

RW
θ .

With this property, by the same arguments in case 2 of Part 1, it follows that the

outcome of the RSW mechanism is the unique PBE outcome. Q.E.D.

Proof for Proposition 8

There are two parts. Part 1: the outcome of the RSW mechanism survives the

intuitive criterion. Part 2: when x#
H ≤ RW

L , the set of intuitive outcome equals that

of the RSW mechanism.21

Part 1 :

It is suffi cient to show that there exists an off-equilibrium-path belief that satisfies

the intuitive criterion and supports both types of the designer proposing the RSW

mechanism as a PBE. By revelation principle, given belief µH such that the designer’s

type is high with probability µH , a grand mechanism Ψ is outcome-equivalent to a

µH − feasible direct grand mechanism Φ (Ψ, µH) = {φθ (Ψ, µH)}θ=L,H . There are

three cases.

In case 1, maxµH RL (Φ (Ψ, µH)) < RW
L , and maxµH RH (Φ (Ψ, µH)) ≥ RW

H . Then

by the intuitive criterion, construct µH (Ψ) = 1. We show RH (Φ (Ψ, 1)) ≤ RW
H by

contradiction. Suppose RH (Φ (Ψ, 1)) > RW
H . By the player’s participation constraint,

U(H,φH (Ψ, 1)) ≥ 0. Since

RL (φL (Ψ, 1)) < RW
L = RW

H −B
(
RW
L

)
< RW

H −B (N (ω))

≤ RH (Φ (Ψ, 1))−B (N (ω)) , (97)

21The proposition can be established by following either Maskin and Tirole (1992) or Nishimura

(2022). Here we follow the former by extending the action space to be infinite dimensional.
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we can apply Lemma 6 to construct a 1−feasible mechanism, Φ′, such that Rθ(φ
′
θ) =

Rθ (φθ (Ψ, µ∗∗)) , U(H,φ′H) = U (H,φH (Ψ, 1)) ≥ 0, and (i) , (ii) of the Lemma 6 holds.

(i) , (ii) of the Lemma 6 implies that full-information IC constraints of the player hold.

(i) of the Lemma 6 also implies that

U (L, φ′L) +RL (φ′L) =

∫ [∫ ω

ω

T (L, ω)fL(ω)dω

]
φ′L(π, γ)dπdγ

=

∫ ω

ω

T (L, ω)fL(ω)dω = RW
L

⇒ U(L, φ′L) = RW
L −RL (φ′L) = RW

L −RL (φL (Ψ, 1)) > 0 (98)

Therefore, Φ′ is a safe mechanism. By maximization, Rθ(φ
′
θ) ≤ RW

θ . Therefore,

Rθ (φθ (Ψ, 1)) ≤ RW
θ , a contradiction. To conclude, both types of designer have no

incentive to deviate.

In case 2, maxµRL (Φ (Ψ, µ)) ≥ RW
L , and maxµRH (Φ (Ψ, µ)) < RW

H . Then by the

intuitive criterion, construct µH (Ψ) = 0. It remains to show that RL (φL (Ψ, 0)) ≤ RW
L .

By the player’s participation constraint, U(L, φL (Ψ, 0)) ≥ 0. Since the sum of the

designer’s payoff and the player’s payoff cannot exceed the effi cient welfare,

U (L, φL (Ψ, 0)) +RL (φL (Ψ, 0)) ≤
∫ ω

ω

T (L, ω)fL(ω)dω

⇒ RL (φL (Ψ, 0)) ≤
∫ ω

ω

T (L, ω)fL(ω)dω − U(L, φL (Ψ, 0))

= RW
L − U(L, φL (Ψ, 0)) < RW

L . (99)

Both types of designer have no incentive to deviate.

In case 3, the intuitive criterion puts no restriction on the belief. The claim is

verified with Proposition 6.

Part 2 :

Consider any µ0
H − feasible direct grand mechanism Φ = {φθ}θ=L,H that imple-

ments an intuitive outcome. It is suffi cient to show that Φ is the RSW mechanism.

First, Lemma 8 shows that Rθ(φθ) ≥ RW
θ .Moreover, since the sum of the designer’s
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payoff and the player’s payoff cannot exceed the effi cient welfare,

U (L, φL) +RL(φL) ≤
∫ ω

ω

T (L, ω) fL(ω)dω = RW
L ⇒ U (L, φL) ≤ RW

L −RL(φL).

(100)

By the player’s participation constraint,

µ0
HU (H,φH) + µ0

LU (L, φL) ≥ 0

⇒ U (H,φH) ≥ −µ
0
LU (L, φL)

µ0
H

≥
µ0
L

[
RL(φL)−RW

L

]
µ0
H

≥ 0. (101)

Second, we will show that if U (H,φH) > 0, there exists a Φ′ = {φ′}θ=L,H such that

RH (φ′H) > RH(φH), RL(φ′L) < RL(φL) and U (H,φ′H) ≥ 0, i.e., only the high-type

designer has incentive to deviate.

Suppose the following fails:

RH (φH) ≥ RL(φL)−
∫ ω

ω

D (L, ω) fL(ω)dω +

∫ ω

ω

D (H,ω) fH(ω)dω. (102)

Since the sum of the designer’s payoff cannot exceed the effi cient welfare, similar to

(83) , RH(φH) < RW
H , which contradicts that RH(φH) ≥ RW

H . Therefore, (102) holds

and we can apply Lemma 6 to construct a µ0
H − feasible mechanism Φ1 = {φ1

θ}θ=L,H
such that RL(φ1

L) = RL(φL), RH(φ1
H) = RH(φH) ≥ RW

H , U
(
H,φ1

H

)
= U (H,φH) > 0

and there exists a probability measure on cutoffs y ∈ [0, 1], σ1
H (y) with

RH

(
φ1
H

)
+ U

(
H,φ1

H

)
=

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ1
H (y) dy, (103)

RL

(
φ1
H

)
+ U

(
H,φ1

H

)
=

∫ ω

ω

N (y)σ1
H (y) dy. (104)

There exists σ′H (y) such that∫ ω

ω

N (y)σ′H (y) dy = RL

(
φ1
H

)
, (105)

B̂

(∫ ω

ω

N (y)σ′H (y) dy

)
=

∫ ω

ω

B (N (y))σ′H (y) dy. (106)

First, we prove by contradiction that

RL

(
φ1
H

)
≥ RW

L . (107)
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Suppose in contrary, RL

(
φ1
H

)
< RW

L . Then similar to the proof of the Lemma 2, by

modifying φ1
H slightly, we can construct a σ

′′
H with∫ ω

ω

N (y)σ′′H (y) dy − U
(
H,φ1

H

)
< RW

L , (108)∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′′H (y) dy − U
(
H,φ1

H

)
> RH

(
φ1
H

)
. (109)

(108) implies that σ′′H and I ′′H =
∫
y=ω

∫ ω
ω
P (H,ω)fH(ω)dωσ′′H (y) dy − U

(
H,φ1

H

)
is a

candidate solution to Problem PH and therefore∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′′H (y) dy − U
(
H,φ1

H

)
≤ RW

H ≤ RH

(
φ1
H

)
,

which contradicts (109) . Second, since U
(
H,φ1

H

)
> 0,∫ ω

ω

N (y)σ′H (y) dy = RL

(
φ1
H

)
<

∫ ω

ω

N (y)σ1
H (y) dy. (110)

Thus, by arguments similar to (91) in Proposition 6,

RH

(
φ1
H

)
≤

∫ ω

ω

N (y)σ1
H (y) dy + B̂

(∫ ω

ω

N (y)σ1
H (y) dy

)
− U

(
H,φ1

H

)
=

∫ ω

ω

N (y)σ′H (y) dy + B̂

(∫ ω

ω

N (y)σ1
H (y) dy

)
<

∫ ω

ω

N (y)σ′H (y) dy + B̂

(∫ ω

ω

N (y)σ′H (y) dy

)
=

∫ ω

ω

N (y)σ′H (y) dy +

∫ ω

ω

B (N (y))σ′H (y) dy

=

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ′H (y) dy. (111)

The last inequality follows (110) , (107) and the following claim:

Claim 2 B̂ (x) is strictly decreasing in x ≥ x#
H .

Proof. Suppose in contrary, there exists x′ > x′′ ≥ x#
H such that B̂ (x′) ≥ B̂ (x′′) .

First, since B (x) < B
(
x#
H

)
for any x > x#

H , B̂ (x′′) < B
(
x#
H

)
. Second, there exists

a η with ηx′ + (1− η)x#
H = x′′ such that

ηB̂ (x′) + (1− η)B
(
x#
H

)
> ηB̂ (x′′) + (1− η) B̂ (x′′) (By B̂ (x′′) < B

(
x#
H

)
)

= B̂ (x′′) (112)
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There contradicts the definition of B̂ (x′′) .

Since N (y) is continuous in y, similar to the proof of the Lemma 2, by modifying

σ′H a bit, there exists a σ
2
H such that∫ ω

ω

N (y)σ2
H (y) dy < RL

(
φ1
H

)
, (113)∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ2
H (y) dy > RH

(
φ1
H

)
, (114)

B̂

(∫ ω

ω

N (y)σ2
H (y) dy

)
=

∫ ω

ω

B (N (y))σ2
H (y) dy (115)

Construct degenerate probability φ′L(π (ω) , γ3) = 1, where

I3 =

∫ ω

ω

N (y)σ2
H (y) dy −

∫ ω

ω

D(L, ω)fL(ω)dω, (116)

φ′H(π (y) ,

(∫ ω
y
P (H,ω) fH (ω) dω

1− FH (y)
, 0

)
) = σ2

H (y) . (117)

Therefore,

RL(φ′L) = RL(φ′H) =

∫ ω

ω

N (y)σ2
H (y) dy, (118)

RH(φ′H) =

∫ ω

ω

∫ ω

y

T (H,ω)fH(ω)dωσ2
H (y) dy. (119)

Since

RH(φ′L) =

∫ ω

ω

N (y)σ2
H (y) dy −

∫ ω

ω

D(L, ω)fL(ω)dω +

∫ ω

ω

D(H,ω)fH(ω)dω

= RL(φ′H) +B (N (ω)) = RL(φ′H) + B̂ (N (ω))

≤ RL(φ′H) + B̂

(∫ ω

ω

N (y)σ2
H (y) dy

)
(By Claim A2)

= RL(φ′H) +

∫ ω

ω

B (N (y))σ2
H (y) dy = RH(φ′H), (120)

the high-type designer’s IC constraint holds. Since RL(φ′L) < RL

(
φ1
H

)
≤ RL

(
φ1
L

)
=

RL(φL), by the intuitive criterion, µH (Φ′) = 1. Since U(H,φ′H) = 0, the player par-

ticipates. Since RH(φ′H) > RH(φ1
H) = RH(φH), the high-type designer deviates.
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To conclude, in both cases, an equilibrium survives the intuitive criterion only if

U (H,φH) = 0.

Third, by Lemma 7, Rθ(φθ) ≥ RW
θ and U (H,φH) = 0 imply that Φ is the RSW

mechanism. Q.E.D.

Appendix C: Proof for Lemma 5

Both conditions (a) and (b) imply π 6= π(ω) or π(ω). Given that we do not distinguish

statistical experiments with zero measure difference, we have

0 <

∫ ω

ω

π (s1|ω)T (H,ω)fH(ω)dω <

∫ ω

ω

T (H,ω)fH(ω)dω. (121)

Since
∫ ω
y
T (H,ω)fH(ω)dω is strictly decreasing in y, there exists a unique y′ ∈ (ω, ω)

with ∫ ω

y′
T (H,ω)fH(ω)dω =

∫ ω

ω

π (s1|ω)T (H,ω)fH(ω)dω. (122)

Thus, we can construct the simplified package as in the Lemma. Obviously, (π′, γ′)

satisfies the player’s IC constraint under belief ξ′ = 1 since t̄′ = V (H, s1, π). We also

have

u (H, π′, γ′) = [1− FH (y′)] [V (H, s1, π
′)− t̄′]− I ′ = u (H, π, γ) , (123)

and

rH (π′, γ′) =

∫ ω

y′
T (H,ω)fH(ω)dω − u (H, π, γ)

=

∫ ω

ω

π (s1|ω)T (H,ω)fH(ω)dω − u (H, π, γ) = rH (π, γ) . (124)

It thus remains to show that rL (π′, γ′) < rL (π, γ) .When condition (a) is satisfied, we

will use the following lemma:

Lemma 9 Suppose h (ω) > 0 for ω ∈ (ω, ω] and π is a binary partition that is not

monotone. 0 <
∫ ω
y
h (ω) dω ≤

∫ ω
ω
π (s1|ω)h (ω) dω implies that for an increasing func-

tion ϑ, ∫ ω
y
ϑ (ω)h (ω) dω∫ ω
y
h (ω) dω

≥
∫ ω
ω
ϑ (ω) π (s1|ω)h (ω) dω∫ ω
ω
π (s1|ω)h (ω) dω

(125)
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with inequality strictly holds if ϑ is strictly increasing.

Proof. First, since π (·|ω) 6= π (ω) , there exists y′ ≤ y such that∫ ω

y′
h (ω) dω =

∫ ω

ω

π (s1|ω)h (ω) dω

⇔
∫ y′

ω

π (s1|ω)h (ω) dω =

∫ ω

y′
[1− π (s1|ω)]h (ω) dω (126)

Since π is not monotone,
∫ y′
ω
π (s1|ω)h (ω) dω > 0 and

∫ ω
y′ [1− π (s1|ω)]h (ω) dω > 0.

Since ϑ is increasing,∫ ω

y′
ϑ (ω)h (ω) dω

=

∫ ω

y′
π (s1|ω)ϑ (ω)h (ω) dω +

∫ ω

y′
[1− π (s1|ω)]ϑ (ω)h (ω) dω

≥
∫ ω

y′
π (s1|ω)ϑ (ω)h (ω) dω + ϑ (y′)

∫ ω

y′
[1− π (s1|ω)]h (ω) dω (127)

=

∫ ω

y′
π (s1|ω)ϑ (ω)h (ω) dω + ϑ (y′)

∫ y′

ω

π (s1|ω)h (ω) dω (By (126) )

≥
∫ ω

y′
π (s1|ω)ϑ (ω)h (ω) dω +

∫ y′

ω

π (s1|ω)ϑ (ω)h (ω) dω (128)

=

∫ ω

ω

ϑ (ω) π (s1|ω)h (ω) dω

⇔
∫ ω
y′ ϑ (ω)h (ω) dω∫ ω

y′ h (ω) dω
≥
∫ ω
ω
ϑ (ω) π (s1|ω)h (ω) dω∫ ω
ω
π (s1|ω)h (ω) dω

(129)

If ϑ is strictly increasing, inequalities in (127) and (128) are strict and therefore the

inequality in (129) is strict.

Second, take derivative of
∫ ω
y ϑ(ω)h(ω)dω∫ ω
y h(ω)dω

with respect to y > ω,

h (y)
∫ ω
y

[ϑ (ω)− ϑ (y)]h (ω) dω[∫ ω
y
h (ω) dω

]2 ≥ 0. (130)

Therefore,∫ ω
y
ϑ (ω)h (ω) dω∫ ω
y
h (ω) dω

≥
∫ ω
y′ ϑ (ω)h (ω) dω∫ ω

y′ h (ω) dω
≥
∫ ω
ω
ϑ (ω) π (s1|ω)h (ω) dω∫ ω
ω
π (s1|ω)h (ω) dω

, (131)
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with inequality strictly holds if ϑ is strictly increasing.

First, T (H,ω)fH(ω) > 0 for ω ∈ (ω, ω], − 1
T (H,ω)

is strictly increasing in ω. Thus,

1− FH (y′)∫ ω
y′ T (H,ω)fH(ω)dω

<

∫ ω
ω
π (s1|ω) fH(ω)dω∫ ω

ω
π (s1|ω)T (H,ω)fH(ω)dω

⇔ 1− FH (y′) <

∫ ω

ω

π (s1|ω) fH(ω)dω. (132)

Applying Lemma 9 again, since − fL(ω)
fH(ω)

is strictly increasing in ω,

1− FL(y′)

1− FH(y′)
<

∫ ω
ω
π (s1|ω) fL(ω)dω∫ ω

ω
π (s1|ω) fH(ω)dω

. (133)

Similarly, we have:∫ ω

y′
[D(L, ω)−D (H,ω)] fH(ω)dω ≤

∫ ω

ω

π(s1|ω) [D(L, ω)−D (H,ω)] fH(ω)dω

(134)∫ ω
y′ [D (L, ω)−D(L, ω)] fL(ω)dω∫ ω
y′ [D (H,ω)−D(L, ω)] fH(ω)dω

≥
∫ ω
ω
π(s1|ω) [D (L, ω)−D(L, ω)] fL(ω)dω∫ ω

ω
π(s1|ω) [D (H,ω)−D(L, ω)] fH(ω)dω

(135)

Condition (b) implies

t̄ < V (ξ, s1, π) ≤ V (H, s1, π). (136)

Moreover, t̄+D(L, ω) ≥ V (ξ, s2, π) +D(L, ω) > P (L, ω) +D(L, ω) ≥ 0, and

1− FL(y′)

1− FH(y′)
>

[D (L, ω)−D(L, ω)] fL(ω)

[D (H,ω)−D(L, ω)] fH(ω)
≥
∫ ω
y′ [D (L, ω)−D(L, ω)] fL(ω)dω∫ ω
y′ [D (H,ω)−D(L, ω)] fH(ω)dω

.

(137)

Therefore,

rL (π′, γ′)− rH (π′, γ′)

= g (L, s1, π
′) t
′ − g (H, s1, π

′) t
′
+

∫ ω

y′
D (L, ω) fL(ω)dω −

∫ ω

y′
D (H,ω) fH(ω)dω

=

[
1− FL(y′)

1− FH(y′)
− 1

] ∫ ω

y′
T (H,ω) fH(ω)dω +

∫ ω

y′
D (L, ω) fL(ω)dω

−
[1− FL(y′)]

∫ ω
y′ D (H,ω) fH(ω)dω

1− FH(y′)
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=

[
1− FL(y′)

1− FH(y′)
− 1

] ∫ ω

ω

π(s1|ω)T (H,ω)fH(ω)dω +

∫ ω

y′
D (L, ω) fL(ω)dω

−
[1− FL(y′)]

∫ ω
y′ D (H,ω) fH(ω)dω

1− FH(y′)

=

[
1− FL(y′)

1− FH(y′)
− 1

] ∫ ω

ω

π(s1|ω) [P (H,ω) +D(L, ω)] fH(ω)dω

+
[FH(y′)− FL(y′)]

∫ ω
ω
π(s1|ω) [D (H,ω)−D(L, ω)] fH(ω)dω

1− FH(y′)

+

∫ ω

y′
[D(L, ω)−D (H,ω)] fH(ω)dω ∗{

1− FL(y′)

1− FH(y′)
−
∫ ω
y′ [D (L, ω)−D(L, ω)] fL(ω)dω∫ ω
y′ [D (H,ω)−D(L, ω)] fH(ω)dω

}

<

[ ∫ ω
ω
π(s1|ω)fL(ω)dω∫ ω

ω
π(s1|ω)fH(ω)dω

− 1

]∫ ω

ω

π(s1|ω)fH(ω)dω [t̄+D(L, ω)]

+
[FH(y′)− FL(y′)]

∫ ω
ω
π(s1|ω) [D (H,ω)−D(L, ω)] fH(ω)dω

1− FH(y′)

+

∫ ω

ω

π(s1|ω) [D(L, ω)−D (H,ω)] fH(ω)dω ∗{
1− FL(y′)

1− FH(y′)
−
∫ ω
ω
π(s1|ω) [D (L, ω)−D(L, ω)] fL(ω)dω∫ ω

ω
π(s1|ω) [D (H,ω)−D(L, ω)] fH(ω)dω

}

=

∫ ω

ω

π(s1|ω) [t̄+D (L, ω)] fL(ω)dω −
∫ ω

ω

π(s1|ω) [t̄+D (H,ω)] fH(ω)dω

= rL (π, γ)− rH (π, γ) (138)

The inequality follows (134) , (135) and that either (133) or (136) holds. We know

rH(π′, γ′) = rH(π, γ), and this completes the proof. Q.E.D.

Appendix D: The sorting assumption

Maskin and Tirole (1992) consider a general setup in which a designer and a player have

payoffs Rθ (y, a) , U (θ, y, a) , respectively, where y is a vector of actions; a is a payment

to the designer from the player; and θ denotes the designer’s private type. They

impose the following sorting assumption:
(
−∂Rθ(y,a)

∂y
/∂Rθ(y,a)

∂a

)
> (−∂Rθ′ (y,a)

∂y
/
∂Rθ′ (y,a)

∂y
)
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for θ < θ′. This is a discrete state analogue of the “Spence—Mirrlees”single crossing

condition (see Fudenberg and Tirole (1991), p. 506). With this assumption, the

RSW mechanism has a simple structure and can be solved successively with only

adjacent upward incentive constraints. Moreover, the deterministic RSW mechanism

is interim effi cient relative to some non-degenerate belief, which is used to prove the

main theorem of their paper: The RSW mechanism and any feasible mechanism that

weakly dominates it can be supported as a PBE. Furthermore, the RSW mechanism

is the unique mechanism that survives the intuitive criterion. The literature on the

informed principal problem with common values (e.g., Balkenborg and Makris (2015)

and Bedard (2017)) imposes different versions of sorting assumption to guarantee

desirable properties.

In this paper, since we allow the designer to choose any information design and

mechanism design, action space cannot be represented by two variables. Therefore

there is no straightforward version of the sorting assumption. In the model with

binary alternatives, suppose we restrict the package to a monotone binary partition

with a cutoff y, a participation fee, and a payment difference equal to the expected

return to the player conditional on that the designer’s type is high and that the state of

nature is above the chosen cutoff. There are two variables: cutoff y and participation

fee I.

Rθ (y, a) = [1− Fθ (y)]

∫ ω
y
P (H,ω)fH (ω) dω

1− FH (y)
+

∫ ω

y

D(θ, ω)fθ (ω) dω + I, (139)

U (θ, y, a) =

∫ ω

y

P (θ, ω)fθ (ω) dω − [1− Fθ (y)]

∫ ω
y
P (H,ω)fH (ω) dω

1− FH (y)
− I.(140)

The sorting assumption requires that

∂ [1− FL (y)]
∫ ω
y P (H,ω)fH(ω)dω

1−FH(y)
+
∫ ω
y
D(L, ω)fL (ω) dω

∂y

>
∂
∫ ω
y
P (H,ω)fH (ω) dω +

∫ ω
y
D(H,ω)fH (ω) dω

∂y

⇔ dM (y)

dy
< 0. (141)
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However, in our model, M (ω) < M
(
N−1

(
x#
H

))
, which violates (141). This paper

provides an environment in which the results of Maskin and Tirole Maskin and Tirole

(1992) still apply without the sorting assumption.
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