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Abstract

This paper studies the nonparametric identification problem for Bayesian games within the

private type paradigm when the researcher cannot perfectly know players’ payoff structures. Under

the exclusion restriction in the form of an exogenous players’ participation, we show that point

identification is feasible when a nonfreeness property holds; otherwise, it becomes infeasible in

general and we establish partial identification with pointwise sharp nonparametric bounds. Our

results can be extended to allow for corner solutions, asymmetric players, unobserved heterogeneity,

and endogenous participation. As such, we have presented positive identification results and a

general econometric framework for the structural analysis of general Bayesian games.
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1 Introduction
Bayesian games have been one of the most important models in modern economics, as they provide

a valuable framework for analyzing strategic interactions in situations where players have incomplete

information, and find applications in a wide range of fields. Although incorporating incomplete

information into economic models is common, analyzing Bayesian games poses challenges from a

theoretical standpoint. This is due to the complexity arising from solving the equilibrium strategies and

analyzing their properties. As a result, the structural analysis of Bayesian games has been relatively

limited, with a notable exception being the auction model that has been extensively studied since

Paarsch (1992). The reason for this exception is probably that due to the discontinuity in bidders’

payoff functions, the first-order conditions in characterizing bidders’ Bayesian Nash equilibrium

strategies are first-order differential equations with well-specified boundary conditions. In contrast, for

general Bayesian games with continuous payoffs, these conditions manifest as integral equations.

Arguably the most standard and straightforward identification problem in Bayesian games centers

on the recovery of the private type distribution of players from observed actions. In this scenario, it

is assumed that only one structural component is unknown to the econometrician and needs to be

identified, while maintaining a known payoff structure. The nonparametric identification approach

then hinges on establishing an equilibrium monotonic relationship between an observable variable

and the player’s private type, and this relationship is often characterized by a one-to-one mapping

expressed through the first-order condition. In auctions, the nonparametric identification and estimation

method developed in Guerre, Perrigne, and Vuong (2000) relies on the mapping from a bidder’s private

value to the equilibrium bid. Beyond auctions, only a limited number of recent papers have analyzed

applications of Bayesian games with continuous payoff functions, and advanced significantly the

structural analysis of Bayesian games. To name a few examples, Aryal and Gabrielli (2020) estimate

a competitive nonlinear pricing model with two firms. He and Huang (2021) study nonparametric

identification and estimation of the Tullock contest model with private information. Bhattacharya

(2021) examines empirically R&D procurement contests, using data on research expenditures and

procurement contracts. His model is of multiple stages with the third stage as a contest model. Aryal

and Zincenko (2023) study identification and estimation of the Cournot competition model under in-

complete information. In all these papers the only model primitive that needs to be (nonparametrically)

identified is the private type distribution, while assuming a known and additive payoff function.

Building on the aforementioned literature that primarily focuses on specific applications and

assumes known payoff functions, this paper addresses the nonparametric identification of general
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Bayesian games within the independent private type paradigm. Departing from the existing literature,

we do not impose full knowledge of the payoff function. We maintain the additive payoff structure,

aligning with the common assumption in the majority of the structural work on Bayesian games with

continuous payoff functions. This framework is broad enough to cover many applications such as

oligopoly competition (Raith (1996)), Diamond search (Diamond (1982)), public good provision

(Bergstrom, Blume, and Varian (1986)), and Tullock contest (Tullock (1980)). To tackle the iden-

tification issue, we focus on the case where a part of the (additive) payoff function is unknown to

researchers. This case allows for a more general treatment compared to assuming knowledge of the

entire functional form, as seen in the current state of the aforementioned literature. Assuming a known

payoff function could be justified in some cases, but could be restrictive in general and can limit the

model’s applicability. Taking the empirical application of political campaigns in the contest model as

an example, the effective cost function is not always an identity function (as the one assumed in He

and Huang (2021)), if one takes into account other important factors, such as the budget constraints

of the candidates or a public funding program by the government, which affects the effective cost of

the candidates’ expenditure. Assuming a particular functional form for this cost function could be

subject to misspecification and lead to misleading results and policy recommendations. Yet little is

known about whether the structural elements in the additive payoff function can be identified without

imposing strong parametric, functional-form assumptions.1 Our approach is also more practical, as it

can accommodate real-world situations where complete knowledge of the functional form may not be

feasible, which also makes the resulting econometric analysis more robust. Our framework allows for

the adaptability to incorporate an unknown part of the payoff function into various examples, such

as firms’ cost functions in oligopoly competition games, searchers’ cost functions in the Diamond

search model, contributors’ cost functions of private contribution in public good provision games, and

contestants’ cost of effort functions in the Tullock contest model, while remaining agnostic about the

true functional form.

In order to nonparametrically identify both the private type distribution and the unknown part of the

payoff function, we impose the exclusion restriction in the form of an exogenous players’ participation.

As a result, the private type distribution becomes independent of the number of players. Moreover, our

paper builds upon the nonfreeness property, which is first introduced in D’Haultfœuille and Février

(2015) to study the nonparametric identification of a triangular nonseparable model, and adapts this

1 This may explain in part why the empirical literature studying the effect of spending on electoral outcomes has largely
employed reduced-form analyses. See, e.g. Jacobson (1978), Green and Krasno (1988), Levitt (1994), Gerber (1998),
Erikson and Palfrey (2000), Sovey and Green (2011), and Gilens, Patterson, and Haines (2021).
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property to a completely different identification problem for a general class of Bayesian games. In

this paper, we first show that the model primitives are nonparametrically point identified if both the

exclusion restriction and the nonfreeness property hold. Intuitively speaking, the nonfreeness property

is about the observed actions and is satisfied whenever there is a crossing between any two distributions

of observed actions with different numbers of players. Unlike D’Haultfœuille and Février (2015) who

focus solely on establishing point identification under the nonfreeness property, our paper also explores

more extensively by constructing bounds on the model primitives even when the nonfreeness property

does not hold and point identification is generally unattainable. Specifically, we characterize the bounds

through a two-step process, where the first step involves constructing preliminary bounds and the

second step employs an iterative procedure to derive the final bounds improved upon the preliminary

ones. Furthermore, we demonstrate that these final bounds are sharp in a pointwise sense. Lastly, we

provide the discussion on the relationship between point and partial identification results. Importantly,

we prove that the characterized bounds will collapse to a singleton whenever point identification is

achieved, showcasing the robustness of our approach without requiring explicit sufficient conditions to

establish point identification.

We illustrate our nonparametric identification approaches in the case of two different numbers

of players. Specifically, we demonstrate both point and partial identification results in a relatively

simplified manner for this particular scenario, and by utilizing a series of graphs to illustrate key

concepts. Additionally, to validate the empirical efficacy of our approach, we present a numerical

exercise that further substantiates the robustness of our findings. We also explore various extensions

to accommodate corner solutions, asymmetric players, unobserved heterogeneity, and endogenous

participation. Therefore, our results apply to an even larger class of Bayesian game models.

Our most significant contribution lies in providing nonparametric identification results for a

general class of Bayesian games, as to the best of our knowledge, this paper is the first one studying

nonparametric identification for general Bayesian games with continuous payoff functions. As such, it

makes significant methodological contributions to the econometrics of games.2 Moreover, our partial

identification results contribute to the partial identification literature in econometrics pioneered by

2 It is worth noting that this paper deals with challenging identification problems in Bayesian games with continuous
actions. While interesting work exists on the identification of Bayesian games with discrete actions, the framework in
our study differs significantly, necessitating distinct identification strategies and approaches. See, e.g., Sweeting (2009),
Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov (2010), Tang (2010), de Paula and Tang (2012), Wan and
Xu (2014), and Lewbel and Tang (2015), among others. On the other hand, for identification of games with complete
information, see, e.g., Bajari, Hong, and Ryan (2010) for identification of discrete games of complete information, and
Kline (2015) for complete information games that allow generalized interaction structures and generalized behavioral
assumptions.
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Charles Manski; see Manski (2003) for a review of early contributions, and more recent work includes

Manski and Tamer (2002), Tamer (2003), Molinari (2008), Chesher and Rosen (2013), among others,

which are surveyed in Tamer (2010) and Molinari (2020). The partial identification approach has been

used also in the structural analysis of auction data starting with Haile and Tamer (2003); see, e.g.,

Hortaçsu and McAdams (2010), Tang (2011), Aradillas-López, Gandhi, and Quint (2013), Gentry and

Li (2014), and Chen, Gentry, Li, and Lu (2019), and also the papers surveyed in Li and Zheng (2021).

While the exclusion restriction in the form of an exogenous players’ participation has been used

in the structural auction literature, see, e.g., Athey and Haile (2002), Haile, Hong, and Shum (2003),

Bajari and Hortaçsu (2005), Guerre, Perrigne, and Vuong (2009), Gentry and Li (2014), and Chen,

Gentry, Li, and Lu (2019), our paper is the first one to use this restriction in addressing identification of

general Bayesian games. Our paper and Guerre, Perrigne, and Vuong (2009) share a similar feature in

that both try to identify two model primitives nonparametrically, namely, the private type distribution

and the unknown payoff function in our case, and the private value distribution and the unknown

utility function in Guerre, Perrigne, and Vuong (2009). However, our problem is significantly different

from the one in Guerre, Perrigne, and Vuong (2009), because the intersection condition naturally

satisfied at the boundary in auction models can be interpreted as a particular case of the nonfreeness

property, and thus, point identification is always achieved. In contrast, in Bayesian games, we show

that point identification is in general not attainable when the nonfreeness property is not satisfied,

but partial identification with pointwise sharp bounds can be established. It is worth noting that

in the recent econometrics literature, the adoption of exclusion restrictions in the form of discrete

variation in certain instrumental variables has been used to address identification of nonlinear and

nonseparable models in different contexts and motivated by different applications. Notably, Torgovitsky

(2015) and D’Haultfœuille and Février (2015) consider triangular nonseparable models with discrete

instruments, and Abbring and Ridder (2015) consider generalized accelerated failure time models with

discrete covariates. They are able to attain point identification, as in Guerre, Perrigne, and Vuong

(2009), because they either establish a crossing pattern (Torgovitsky (2015)) or make a large support

assumption (Abbring and Ridder (2015)). Furthermore, D’Haultfœuille and Février (2020) establish

partial identification of a principal-agent model, through the exogenous change in the contract structure

across time, with the contract data between the French National Institute of Statistics and Economics

and the interviewers the Institute hired to conduct its surveys. They obtain partial identification rather

than point identification as the distributions of observed probability for conducting a survey do not

cross.

Another point worth noting is that our approach relying upon the exclusion restriction is different

5



from an alternative method that leverages multiple first-order conditions without exploiting exogenous

variations. This alternative strategy often involves recovering a set of model primitives whose number is

equal to the number of conditions. In contrast to our paper, which focuses on a broad class of Bayesian

games with a single first-order condition, several recent papers have explored specific Bayesian models

that exhibit a two-sided nature. These models allow for the derivation of multiple first-order conditions,

leading to the nonparametric identification of model primitives. For instance, Luo, Perrigne, and

Vuong (2018) develop a nonparametric identification approach for a nonlinear pricing model, aiming

to recover the unknown utility function and private type distribution while parameterizing the cost

function by leveraging the first-order conditions for both the consumer and the firm. Moreover, the

benchmark principal-agent model considered in Bontemps, Lesellier, and Martimort (2022) generates

two first-order conditions for both the principal and the agent, as well as the condition to ensure

efficiency, which are used together to identify three unknown functions: the cost function, the surplus

function, and the private type distribution. In their full model with explanatory variables and the

latent heterogeneity on the demand side, the identification strategy requires excluded variables and the

corresponding completeness conditions on these variables, drawing from the literature on nonlinear

instrumental variable models.

Our econometric approach is based on the theoretical literature on Bayesian games. Existence

and/or uniqueness of a monotone pure strategy Nash equilibrium (MPSNE) have been established

in several different frameworks that complement each other using different approaches. First, Athey

(2001) provides a central tool to establish the existence of MPSNE for Bayesian games that satisfies

the single crossing condition.3 Second, Van Zandt and Vives (2007) establish the existence of a

greatest and a least MPSNE for Bayesian games with strategic complementarities. Polydoro (2011)

further provides sufficient conditions for uniqueness. Third, Mason and Valentinyi (2010) establish the

existence and uniqueness of MPSNE using the contracting mapping method. Lastly, the existence and

uniqueness of MPSNE in the Tullock contest model under incomplete information has been established

separately by Fey (2008), Ryvkin (2010), and Ewerhart (2014). In our paper, to accommodate as

many applications as possible, we assume the existence of MPSNE, meaning that our nonparametric

methodology can be applied to any of the above frameworks. We further impose strict supermodularity

3 McAdams (2003) extends Athey’s model to allow partially ordered multidimensional type and action spaces. Reny
(2011) further allows action spaces to be compact and locally complete metric semilattices, and type spaces to be partially
ordered probability spaces.
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between one’s own action and type to ensure that the existing MPSNE is strictly monotone.4

The rest of the paper is organized as follows. Section 2 introduces the benchmark Bayesian game.

Section 3 discusses the nonfreeness property and establishes the nonparametric identification results

under the exclusion restriction. Section 4 illustrates the identification results using the case of two

different numbers of players and presents the numerical exercise. Section 5 extends the model. Section

6 concludes. The proofs of our main results are in the Appendix.

2 Model
2.1 The Benchmark Model

We present the independent private type (IPT) Bayesian game with symmetric players in the

benchmark model, and various extensions will be discussed in Section 5. There are N ex-ante symmetric

players engaging in a Bayesian game, where N ∈N and N ≡{2,3, · · ·} with the cardinality |N |=K

and 2 ≤ K < ∞. Player i ∈ {1, · · · ,N} has a private type ti drawn from a distribution with CDF

F(·|N) over the type space T (N)≡ [t(N), t̄(N)]⊂ R, where F(·|N) is absolutely continuous with an

atomless density f (·|N). Types are drawn independently across players. All players choose actions

simultaneously. Player i’s action ai is chosen from a compact action space A ⊂ R. Since all players

are ex-ante symmetric, we focus on the symmetric strategy, and each player’s strategy is a mapping

from the type space to the action space, i.e., s : T (N)→ A . Player i’s payoff depends on all players’

actions and her own type, and thus is a mapping π : A N ×T (N)→ R. This payoff is symmetric in

the actions taken by player i’s rivals, thus denoted as π(ai,a−i, ti), where a−i = (· · · ,ai−1,ai+1, · · ·)
denotes the action vector of all rivals of player i. The number of players N, the distribution of private

types F(·|N), and the payoff function π(·, ·, ·) are common knowledge among all players participating

in the same game.

The following assumption gives the regularity conditions and properties for the CDF F(·|N):

Assumption 1 [Regularity Conditions on F] For N ∈ N , let F be a class of functions that satisfies

the following conditions, ∀F(·|N) ∈ F :

(i) F(·|N) is a CDF with a compact support T (N) = [t(N), t̄(N)]⊂ R.

(ii) F(·|N) admits up to R+1 continuous and bounded derivatives over its support with R ≥ 1.

(iii) The PDF f (·|N) is bounded away from zero and infinity over T (N).

Assumption 1 implies that the PDF f (·|N) admits up to R continuous and bounded derivatives on

4 There is a large literature that establishes the existence of pure strategy equilibrium but without the property of
monotonicity, to name a few, see Vives (1990), Milgrom and Weber (1985), Khan and Zhang (2014), Barelli and Duggan
(2015), and He and Sun (2019).
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its support T (N).

As discussed in the Introduction, it is usually assumed in the literature that the structure of

π(ai,a−i, ti) is additive and known by the researcher. We will follow the literature on assuming an

additive payoff structure, but explore the possibility of an unknown structure in the payoff function.

We impose some regularity conditions on the payoff function as follows:

Assumption 2 [Regularity Conditions on π] For N ∈ N , let Π be a class of functions that satisfy the

following conditions, ∀π(·, ·, ·) ∈ Π:

(i) π(ai,a−i, ti) = tix(ai,a−i)+ y(ai,a−i)+ z(ai), where x(·, ·) and y(·, ·) are known functions of all

players’ actions while z(·) is an unknown function of player i’s own action.

(ii) x(·, ·), y(·, ·), and z(·) admit up to R+ 2 continuous and bounded partial derivatives on their

supports A N , A N , and A respectively, with R ≥ 1.

(iii) z(·) is concave on its support A .

(iv) π(ai,a−i, ti) is strictly supermodular in (ai, ti) almost everywhere: there exist positive numbers mx

and Mx such that

mx ≤
∂ 2π(ai,a−i, ti)

∂ai∂ ti
=

∂x(ai,a−i)

∂ai
≤ Mx almost everywhere ∀i.

Part (i) of Assumption 2 states that we focus on Bayesian games with an additive payoff structure

with one unknown function z(·), which only depends on player i’s own action ai. Note that ti can be

replaced by a deterministic and known function of ti such as h(ti). Assumption 2-(ii) assumes the

smoothness of functions x(·, ·), y(·, ·), and z(·), which in turn determines the smoothness of the payoff

function. Part (iii) imposes some shape restriction on the latent function z(·), which plays an important

role when we establish the partial nonparametric identification result in Section 3.5 Assumption 2-(iv)

states that the payoff function of player i is strictly supermodular in this player’s own type and action,

and is essential in the next subsection’s discussion on the strict monotonicity of the Bayesian Nash

Equilibrium (BNE), the equilibrium notion we adopt throughout the paper.6

All these assumptions are standard and satisfied by the following commonly studied applications

of Bayesian games.

Example 1 Cournot competition: The private type ti is a firm’s demand characteristic and the action

5 The characterization of bounds in Section 3.3 remains applicable if z(·) is a convex function; and the point identification
results in Section 3.2 do not rely on this shape restriction.

6 For a Bayesian game with a strictly decreasing equilibrium strategy, we can simply redefine the private type through
some strictly decreasing transformation of ti, such as −ti or 1/ti.
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ai is a firm’s production level.7 Firm i’s profit is

π(ai,a−i, ti) =

(
ti −

N

∑
j=1

a j

)
ai − c(ai) = tiai −ai

N

∑
j=1

a j − c(ai),

where x(ai,a−i) = ai, y(ai,a−i) =−ai ∑
N
j=1 a j, and z(ai) =−c(ai).

Example 2 Diamond search model: The private type ti is a player’s valuation of a match and the

action ai is a player’s search intensity. The payoff function for player i is

π(ai,a−i, ti) = tiai

(
∑
j ̸=i

a j

)
− c(ai),

where x(ai,a−i) = ai
(
∑ j ̸=i a j

)
, y(ai,a−i) = 0, and z(ai) =−c(ai).

Example 3 Public good provision: The private type ti is a player’s value of the public good, and the

action ai is the individual contribution. The payoff function for player i is

π(ai,a−i, ti) = ti(ai +∑
j ̸=i

a j)
2 − c(ai),

where x(ai,a−i) = (ai +∑ j ̸=i a j)
2, y(ai,a−i) = 0, and z(ai) =−c(ai).

Example 4 Tullock contest: The private type ti is a player’s valuation of winning the prize, and the

action ai is the expenditure in R&D contests, or funds raised in political campaigns. Then the payoff

function for player i is

π(ai,a−i, ti) = ti
ai

ai +∑ j ̸=i a j
− c(ai),

where ai
ai+∑ j ̸=i a j

is the Tullock contest success function, and c(·) is the cost function of action. This

application has x(ai,a−i) =
ai

ai+∑ j ̸=i a j
, y(ai,a−i) = 0, and z(ai) =−c(ai).8

2.2 Strictly Monotone Pure Strategy Nash Equilibrium
In order to discuss the identification problem, we focus on the strictly monotone symmetric pure-

strategy Nash Equilibrium (MPSNE) where all players adopt the same strictly increasing equilibrium

strategy s(·). Given that all other players adopt the same equilibrium strategy, i.e., a j = s(t j) for j ̸= i,

player i’s maximization problem, when having private type ti, can be written as:

max
ai

∫
t−i∈T (N)N−1

[tix(ai,s−i(t−i))+ y(ai,s−i(t−i))+ z(ai)]dF−i(t−i|N), (2.1)

7 A more standard and less general model is to assume that firms have a constant private marginal cost. However, in that
model, the payoff structure is known by the researcher.

8 The payoff in a Tullock model is continuous except when all players choose zero efforts, which never happens in
equilibrium (see Ewerhart (2014)). Hence, the Tullock model remains within the scope of the class of games under study.
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where s−i(t−i) = (· · · ,s(ti−1),s(ti+1), · · ·), t−i are the types of player i’s rivals, and dF−i(t−i|N) =

· · ·dF(ti−1|N)dF(ti+1|N) · · · . Therefore, the first order condition (FOC) together with the equilibrium

condition leads to the following integral equation, where ∀i and ∀ti,

ti ·
∫

t−i∈T (N)N−1

∂x(s(ti),s−i(t−i))

∂ai
dF−i(t−i|N)+

∫
t−i∈T (N)N−1

∂y(s(ti),s−i(t−i))

∂ai
dF−i(t−i|N)+ z′ [s(ti)] = 0,

(2.2)

where the partial derivatives are with respect to the first argument of the functions x(·, ·) and y(·, ·),
respectively.9 Then we have the following result.

Proposition 1 Under Assumptions 1 and 2, for N ∈ N , the equilibrium with s(·) : T (N)→ A char-

acterized by (2.2) for the specific class of IPT Bayesian games with the structure [F(·|N),π(·, ·, ·)] ∈
F ×Π satisfies the following properties:

(i) s(·) is strictly increasing, and admits up to R+1 continuous and bounded derivative on its support

T (N).

(ii) s(·) has a compact image [a(N), ā(N)] = [s(t(N)),s(t̄(N))]⊂ A .

As discussed in the Introduction, existence and uniqueness of the monotone pure strategy Nash

equilibrium have been well established in the literature. The strict supermodularity condition in

Assumption 2-(iv) ensures that the equilibrium is strictly monotone. Note that the uniqueness is not

essential here: with multiple equilibria, as long as players always act according to one of the equilibria,

it does not affect our identification results below.

3 Nonparametric Identification under Exclusion Restriction
Suppose that the number of players N is observed, and the conditional distribution G(·|N) of an

equilibrium action is known.10 Econometricians are interested in identifying the underlying structure

[F(·|N),z(·)] from the observables. The identification problem asks whether [F(·|N),z(·)] can be

recovered uniquely from [N,G(·|N)]. To this end, we impose the exclusion restriction in the form of

an exogenous players’ participation:

Assumption 3 [Exclusion Restriction] The CDF F(·|·) does not depend on the number of players N,

i.e., F(·|N) = F(·) and f (·|N) = f (·) for all N ∈ N . Both F(·) and f (·) are defined on a compact

support T = [t, t̄].

9 Here we focus on the interior solutions, and will consider the extension to accommodate corner solutions in Section 5.1.
Further, we assume that the second order condition holds throughout the paper.

10 G(·|N) can be consistently estimated using common nonparametric estimation methods such as kernel and sieve.
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Assumption 3 is our leading identification condition in line with the discussion in the Introduction,

which assumes that the latent private type distribution is independent of the number of players. Under

Assumption 3, the identification problem now amounts to establishing whether [F(·),z(·)] is uniquely

determined. It is crucial to recognize that the independence between F(·) and N does not extend to the

equilibrium action distribution. The equilibrium strategy s(·) still relies on N (that is denoted as s(·|N)

from now on), resulting in the equilibrium action distribution G(·|N) being dependent on N as well.

In the remainder of this section, we proceed by addressing the nonparametric identification strategy.

Subsequently, we examine a sufficient condition (the nonfreeness property in Definition 2) for achieving

point identification results. Finally, we present pointwise sharp bounds on the model primitives when

the sufficient condition fails to hold and explore the relationship between partial and point identification

outcomes.

3.1 Nonparametric Identification Strategy and Nonfreeness Property
Our identification strategy hinges on the reduction of identifying two functions, i.e., F(·) and

z(·), to only one. To begin, we rewrite the FOC in (2.2). Following Proposition 1-(ii), G(·|N)

has a compact support [a(N), ā(N)] = [s(t(N)),s(t̄(N))]. For each a ∈ [a(N), ā(N)] and for all i,

G(a|N) = Pr (ai ≤ a|N) = Pr
(
ti ≤ s−1(a)|N

)
= F(t), where a = s(t). Hence, we can write (2.2) as:

ti ·
∫

a−i∈[a(N),ā(N)]N−1

∂x(ai,a−i)

∂ai
dG−i(a−i|N)+

∫
a−i∈[a(N),ā(N)]N−1

∂y(ai,a−i)

∂ai
dG−i(a−i|N)+z′(ai)= 0,

(3.1)

where ti = s−1(ai), and G−i(a−i|N) denotes the joint distribution of the action profile of player i’s

rivals a−i conditional on N. Alternatively, we can denote the two multiple integrals as expectations

taken over a−i and rewrite (3.1) as:

ti ·Ea−i

[
∂x(ai,a−i)

∂ai

∣∣∣∣N]+Ea−i

[
∂y(ai,a−i)

∂ai

∣∣∣∣N]+ z′(ai) = 0. (3.2)

The following proposition gives the regularity properties that the equilibrium action CDF G(·|N)

satisfies, implied by the regularity conditions on the CDF of private types F(·) in Assumption 1, the

payoff function π(·, ·, ·) in Assumption 2, and the equilibrium strategy function s(·) in Proposition 1.

Proposition 2 Under Assumptions 1-3, the derived equilibrium action CDF G(·|N) for the specific

class of IPT Bayesian games with the structure [F(·),π(·, ·, ·)] ∈ F ×Π satisfies the following condi-

tions:

(i) G(·|N) is a CDF with a compact support [a(N), ā(N)] = [s(t(N)),s(t̄(N))]⊂ A .

(ii) G(·|N) admits up to R+1 continuous bounded derivatives on [a(N), ā(N)] with R ≥ 1.

(iii) The PDF g(·|N) admits up to R continuous bounded derivatives and is bounded away from zero
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and infinity on [a(N), ā(N)], with R ≥ 1.

Parts (i) and (ii) of Proposition 2 are similar to parts (a) and (b) in Assumption 1. Part (iii) of

Proposition 2 gives the regularity properties of the PDF g(·|N), which are specific to the Bayesian

game model we consider, and are different from what is derived for the first-price auction model as in

Guerre, Perrigne, and Vuong (2000), Guerre, Perrigne, and Vuong (2009), and Marmer and Shneyerov

(2012), where the PDF of the equilibrium bids admits up to R+1 continuous bounded derivatives. The

reason for this discrepancy arises from the nature of the first-order conditions. In general Bayesian

games with continuous payoffs, they take the form of integral equations. However, in auctions, they

are expressed as differential equations. Next, we summarize the conditions in Proposition 2 to define

the class of action CDFs under consideration.

Definition 1 [Regularity Conditions on G] For N ∈ N , let G be a class of functions such that

∀G(·|N) ∈ G satisfies all the conditions in Proposition 2.

Let t(τ) be the τ-th quantile of F(·), i.e., F
(
t(τ)

)
= τ . Since a(τ) = s

(
t(τ)|N

)
, G
(
a(τ)|N

)
=

F
(
t(τ)

)
= τ , implying that a(τ) is the τ-th quantile of G(·|N) for each N. Therefore, (3.2) can be

expressed as an equation of τ on its support [0,1] as follows, known as the τ-FOC:

t(τ) ·Ea−N

[
∂x(a(τ),a−N)

∂a

∣∣∣∣N]+Ea−N

[
∂y(a(τ),a−N)

∂a

∣∣∣∣N]+ z′ [a(τ)] = 0, (3.3)

where Ea−N denotes the expectation taken over all possible action profiles of N −1 rivals, and a−N

shows the action profile of these N−1 players. Note that we use these simplified notations by symmetry.

From the τ-FOC (3.3), we also derive explicitly the inverse strategy function for interior solutions as

follows:

t(τ) =−
{

z′ [a(τ)]+Ea−N

[
∂y(a(τ),a−N)

∂a

∣∣∣∣N]} ·
{
Ea−N

[
∂x(a(τ),a−N)

∂a

∣∣∣∣N]}−1

≡ξ
(
a(τ),z′ [a(τ)]

∣∣N) , (3.4)

which emphasizes its dependence on the unknown z′ being monotonically decreasing under Assumption

2-(iii).

To ease the notation, when N takes the value N j, the corresponding equilibrium strategy is expressed

as s j(·)≡ s
(
·
∣∣N = N j

)
with the inverse strategy denoted as ξ j(·)≡ ξ

(
·,z′[·]

∣∣N = N j
)
. The equilibrium

action distribution is G j ≡ G(·|N = N j), where a j ∈ [a j, ā j]. The τ-FOC in (3.3) given N = N j is

simplified as:

t(τ) ·Ex
j
[
a j(τ)

]
+Ey

j
[
a j(τ)

]
+ z′

[
a j(τ)

]
= 0, (3.5)

where Ex
j
[
a j(τ)

]
≡ Ea−Nj

[
∂x(a j(τ),a−Nj )

∂a j

∣∣∣∣N j

]
(a similar expression applies to y).
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With the exogenous participation under Assumption 3, we can cancel out the common t(τ) from

the τ-FOCs of different numbers of players Ni and N j, and obtain the following result:

Ey
i [ai(τ)]Ex

j
[
a j(τ)

]
−Ey

j
[
a j(τ)

]
Ex

i [ai(τ)] = z′
[
a j(τ)

]
Ex

i [ai(τ)]− z′ [ai(τ)]Ex
j
[
a j(τ)

]
. (3.6)

Consequently, for any (Ni,N j) ∈ N 2 and any τ ∈ [0,1],

z′
[
a j(τ)

]
= z′ [ai(τ)]

Ex
j
[
a j(τ)

]
Ex

i [ai(τ)]
+Ey

i [ai(τ)]
Ex

j
[
a j(τ)

]
Ex

i [ai(τ)]
−Ey

j
[
a j(τ)

]
≡ γi j

(
z′ [ai(τ)]

)
, (3.7)

where we define the operator from z′ [ai(τ)] to z′
[
a j(τ)

]
as γi j. This operator γi j is strictly increasing

under the strict supermodularity Assumption 2-(iv), which plays an important role in the main (partial)

identification results.

Importantly, if z′ [ai(τ)] is identified, z′
[
a j(τ)

]
is immediately identified as γi j is known. Further,

the two associated action values are also linked, since ai(τ) and a j(τ) are the τ-th quantiles of Gi and

G j respectively:

a j(τ) = G−1
j ◦Gi

(
ai(τ)

)
≡ λi j

(
ai(τ)

)
, (3.8)

where we define another known operator from ai(τ) to a j(τ) as λi j. Therefore, for any a on Gi, λi j(a)

maps this a to a point on G j, and accordingly, z′
[
λi j(a)

]
= γi j

(
z′(a)

)
.11 Thus, z′

[
λi j(a)

]
is identified

once z′(a) is determined.

When n > 0, λ n
i j = λi j ◦λ

n−1
i j = λi j ◦ · · · ◦λi j, indicating that we always map a on Gi to a point

on G j. Moreover, the composition(s) of λi j and γi j can also be used to identify z′ at more points

expressed as λ n
i j(a): z′

[
λ n

i j(a)
]
= γn

i j
(
z′(a)

)
for any n ∈ Z. On the other hand, when n < 0, λ n

i j =

λ
−1
i j ◦

(
λ
−1
i j

)n−1
= λ

−1
i j ◦ · · ·◦λ

−1
i j . It is obvious that λ

−1
i j = λ ji meaning that we map a on G j to a new

a on Gi.12 Furthermore, if K ≥ 3, meaning the number of players N can take more than two values,

more operators can be employed to identify z′: indeed applying λkl where (Nk,Nl)∈N 2 along with its

composition(s) reaches more new action values; and any composition(s) in the form of λkl ◦λi j where(
Ni,N j,Nk,Nl

)
∈ N 4 is also usable. In the end, for the purpose of nonparametrically identifying z′,

we consider all such operators as described above and the associated action values that can be reached

starting from an arbitrary a.

Formally, we follow D’Haultfœuille and Février (2015), and collect all possible operators on a in

the form of λi j defined in (3.8) along with their compositions(s). All these operators form a group

denoted as Λa.13 Now we are ready to introduce the concept of nonfreeness.

11 More precisely, a is a quantile of Gi, and λi j(a) is the corresponding quantile of G j that satisfies: G j
(
λi j(a)

)
= Gi(a).

12 Trivially, if n = 0, λ 0
i j is just the identity function.

13 Note that Λa generally depends on the starting point a.
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Definition 2 [Nonfreeness] The group Λa satisfies the nonfreness property if there exists λ ∈ Λa

different from the identity function that admits a positive and finite number of fixed points.

The nonfreeness property is first introduced by D’Haultfœuille and Février (2015). It is important

to note that the nonfreeness property is about observables and can be verified from the data directly.

To be more specific, it depends on the patterns of all G js, i.e., how the exogenous number of players

affects the action CDF. When K = 2, the nonfreeness property holds if and only if Gi and G j cross. This

is because intersection points are natural fixed points of λi j (and λ ji). When K ≥ 3, the nonfreeness

property holds if at least two action CDFs cross, and might still hold even if there is no crossing among

all G js.14

It turns out that our identification results can be classified into two categories depending on whether

the nonfreeness property holds or not. In what follows, we first show that point identification can

be achieved when the nonfreeness property holds. We then consider the case when the nonfreeness

property does not hold, in which case point identification is generally unattainable, and show how to

establish pointwise sharp bounds.

3.2 When Nonfreeness Holds: Point Identification
Starting from an a ∈ Supp(a) ≡ ∪K

j=1
[
a j, ā j

]
, the generated orbit of a is denoted as Oa ≡

{λ (a)|λ ∈ Λa} containing all action values that can be reached if applying some operator λ to the

initial a. Obviously, Oa ⊂ Supp(a). We can also define another group Γz′(a) by collecting all possible

operators on z′(a) in the form of γi j defined in (3.7) along with its compositions(s). By construction,

there is a bijection mapping between Λa and Γz′(a).15 For all ã ∈ Oa, there exists a λ ∈ Λa such that

ã = λ (a). Due to the bijection between Λa and Γz′(a), there is exactly one γ ∈ Γz′(a) formed in exactly

the same way as λ , and more importantly, z′ (ã) is identified as z′(ã) = γ
(
z′(a)

)
up to an obvious

normalization of z′ at a. Indeed, if we normalize that z′ (a) = zo, it follows that z′(ã) = γ
(
zo).16 In

summary, we can identify z′ on the orbit Oa, which is formally stated in the following lemma.

Lemma 1 Under Assumptions 1-3 and the normalization that z′(a)≡ zo for one a∈ Supp(a), consider

an action distribution G(·|·) ∈ G . Then for each ã ∈ Oa, z′ is point identified.

14 See D’Haultfœuille and Février (2015) for the detailed discussion.

15 For instance, if λ ∈ Λa is defined as three compositions of λi j, i.e., λ 3
i j, then there is exactly one element in Γz′(a) denoted

as γ taking the form of γ3
i j.

16 Normalization is a common practice in the literature on the identification of models with incomplete information, such
as Luo, Perrigne, and Vuong (2018), Aryal and Gabrielli (2020), D’Haultfœuille and Février (2020), and Bontemps,
Lesellier, and Martimort (2022).
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Obviously, if Oa = Supp(a), the point identification of z′ over the full support Supp(a) is obtained.

It turns out that this is true when the nonfreeness property holds. To see this, when the nonfreeness

property holds, λ has fixed points. Suppose λ has a fixed point such that λ (ao) = ao for some

ao ∈ Supp(a), then for an arbitrary a ∈ Supp(a) and a ̸= ao we can show that ao is the limit point of

the sequence {λ n(a)}n∈N as n goes to infinity. Since {λ n(a)}n∈N is a subset of Oa, Oa contains the

limit point ao. Further, due to the arbitrariness of a, inverting the above process implies that starting

from ao can lead to all points on Supp(a). As a result, Supp(a)⊂ Oa and we have that Oa = Supp(a).

The scenario with multiple fixed points is slightly more involved, however, the fundamental reasoning

remains unchanged as we can prove that Supp(a)⊂ Oa.

Once z′ is identified at ã, we use the inverse strategy function ξ in (3.4) to identify F(·) at t̃

such that t̃ = ξ j(ã) for some N j. More specifically, we can identify F(t̃) as G j

(
ξ
−1
j (t̃)

)
, because

the identification of z′ implies the identification of ξ j. Consequently, we have the following point

identification results.

Theorem 1 When the nonfreeness property holds, under Assumptions 1-3 and the normalization that

z′(a)≡ zo for one a ∈ Supp(a), consider an action distribution G(·|·) ∈ G . Then Oa = Supp(a), and

z′ and F are point identified on Supp(a) and [t, t̄], respectively.

3.3 When Nonfreeness Does Not Hold: Pointwise Sharp Bounds
When the nonfreeness property does not hold, there is no fixed point for any operator λ ∈ Λa,

and no pair of action distributions can cross. We then arrange the CDFs as G1, G2, · · · , GK such that

a1 < a2 < · · ·< aK (thus, ā1 < ā2 < · · ·< āK). In this way, graphically we align all the CDFs within a

single figure, ordering them from the left to the right in the sense that G j+1 stochastically dominates

G j at the first order.

Figure 1 illustrates the process of generating the orbit Oa when K = 3 and nonfreeness does not

hold: applying λi j or λik to a point a on Gi (a ∈ [ai, āi]) ends up with a new point λi j(a) on G j or λik(a)

on Gk. Note that a, λi j(a), and λik(a) correspond to the same τ0
a . Then, by treating λik(a) as a point on

G j, applying λ ji to this point gives a fourth point λ ji ◦λik(a) on Gi. Applying λ jk gives a fifth point

λ jk ◦λik(a). Again, note that λ ji ◦λik(a), λik(a), and λ jk ◦λik(a) correspond to a new τ1
a . In principle,

we can continue applying such operators and generate more points. We eventually obtain the orbit Oa,

which can always be expressed as trios consisting of the quantiles of Gi, G j, and Gk.17 The following

lemma shows that Oa contains countable elements when nonfreeness does not hold.

17 This is despite the existence of some equal values as all points in this 2-dimensional coordinate system that can be
projected to the same x-coordinate correspond to the same a. For instance, λik(a) and λ jk ◦λik(a) in Figure 1.
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Figure 1: Creation of orbit when K = 3.

0 a

G(·)

1
G j(·)Gi(·) Gk(·)
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Lemma 2 When the nonfreeness property does not hold, under Assumptions 1-3, consider an action

distribution G(·|·) ∈ G . Then Oa is countable, ∀a ∈ Supp(a) .

Since the support for the action Supp(a) is compact, the countable orbit Oa is unable to completely

fill it. Hence, point identification cannot be achieved in general.18 In what follows, we turn to establish

the pointwise sharp bounds on z′ (and F), thereby indicating that partial identification results always

hold.

By Lemma 2 and the construction of the orbit as shown in Figure 1, the countable orbit Oa

induces a countable increasing sequence of probabilities (y-coordinates in Figure 1), denoted as{
τ0

a ,τ
1
a , · · · ,τL

a
}

.19 Thus, despite the existence of equal values (see Footnote 17), we rewrite Oa as

follows:

Oa =
{

a1
(
τ

0
a
)
, · · · ,a1

(
τ

L
a
)

; a2
(
τ

0
a
)
, · · · ,a2

(
τ

L
a
)

; · · · ; aK
(
τ

0
a
)
, · · · ,aK

(
τ

L
a
)}

. (3.9)

The formulation of the orbit in this manner offers the benefit of providing a comprehensive account of

all probabilities and the associated quantiles of all G js. As a result, we will maintain the use of this

expression going forward. In what follows, we first characterize preliminary bounds and then use them

to derive pointwise sharp bounds.

Preliminary Bounds
To bound z′, we define the normalization at a1 (the 0-th quantile of G1) such that z′ (a1)≡ zo. The

18 The only case in which point identification result is achieved despite the nonfulfillment of the nonfreeness property
occurs when Oa is dense in Supp(a). See Section 3.4 for detailed discussion.

19 It is important to note that this sequence generally depends on the starting point a.
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orbit Oa1 defined in (3.9) by replacing a with a1 is a proper subset of Supp(a). The corresponding

increasing sequence of probabilities is
{

τ0
a1
,τ1

a1
, · · · ,τL

a1

}
, where τ0

a1
= 0 by construction, and we

further assume τL
a1
= 1 for the ease of illustration.20 By Lemma 1, z′ at the orbit Oa1 is point identified:

Lemma 3 When the nonfreeness property does not hold, under Assumptions 1-3, consider an action

distribution G(·|·) ∈ G . Then z′
[
a j

(
τ l

a1

)]
is point identified, ∀ j ∈ {1, · · · ,K}, ∀l ∈ {0, · · · ,L}.

We seek to use the point identified orbit Oa1 to construct bounds for all other points. Suppose

we start with any value that does not belong to the orbit Oa1 , say ã. The orbit Oã defined in (3.9)

by replacing a with ã is also a proper subset of Supp(a). The corresponding increasing sequence of

probabilities is
{

τ0
ã , · · · ,τ

L−1
ã
}

. The following lemma reveals an important relationship between the

two increasing sequences of probabilities:

Lemma 4 When the nonfreeness property does not hold, under Assumptions 1-3, consider an action

distribution G(·|·) ∈ G . Then τ l
a1
< τ l

ã < τ l+1
a1

, ∀ j ∈ {1, · · · ,K}, ∀l ∈ {0, · · · ,L−1}.

By Lemma 4 and the shape restriction in Assumption 2-(iii), we can bound z′ for each point in Oã

in the following manner:

τ
l
a1
< τ

l
ã < τ

l+1
a1

,

⇔ a j

(
τ

l
a1

)
< a j

(
τ

l
ã

)
< a j

(
τ

l+1
a1

)
,

⇔ z′
[
a j

(
τ

l+1
a1

)]
≤ z′

[
a j

(
τ

l
ã

)]
≤ z′

[
a j

(
τ

l
a1

)]
.

This is summarized in the following lemma.

Lemma 5 When the nonfreeness property does not hold, under Assumptions 1-3, consider an action

distribution G(·|·) ∈ G . Then z′
[
a j
(
τ l

ã
)]

∈

[
z′
[
a j

(
τ l+1

a1

)]
,z′
[
a j

(
τ l

a1

)]]
, ∀ j ∈ {1, · · · ,K}, ∀l ∈

{0, · · · ,L−1}

Recall that associated with the group Λã that generates Oã, there is another group Γz′(ã) as intro-

duced in the beginning of Section 3.2 whose element/operator can always relate z′
[
a j(τ

l
ã)
]

to z′(ã).

Thus, we let z′(ã) = φ j,l (z′ [a j(τ
l
ã)
])

, where the inverse of φ j,l belongs to Γz′(ã). Another noteworthy

observation is that φ j,l is strictly increasing, as it builds on the composition(s) of γi j which is always

20 Whether τL
a1
= 1 holds depends on the shapes of all G js. While the case of τL

a1
< 1 adds complexity to the characterization

of preliminary bounds in terms of expression, it does not introduce any new fundamental concept. It simply requires the
consideration of one-sided bounds for the interval (τa1 ,1].
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strictly increasing under Assumption 2-(iv). Consequently, for each j and l, we derive one pair of

bounds on z′(ã) as

z′ (ã) ∈

[
φ

j,l
(

z′
[
a j(τ

l+1
a1

)
])

,φ j,l
(

z′
[
a j(τ

l
a1
)
])]

.

We then collect all such bounds by varying j and l to derive the tightest pair as the preliminary bounds

on z′ (ã).

Proposition 3 When the nonfreeness property does not hold, under Assumptions 1-3 and the normal-

ization that z′(a1)≡ zo, consider an action distribution G(·|·) ∈ G . Then z′(·) is nonparametrically

partially identified on the supports Supp(a) \Oa1 . Specifically, for ã ∈ Supp(a) \Oa1 , we have

z′(ã) ∈
[
L(z′(ã);zo) ,U (z′(ã);zo)

]
where

L
(
z′(ã);zo)≡ sup

j∈{1,··· ,K},
l∈{0,··· ,L−1}

{
φ

j,l
(

z′
[
a j

(
τ

l+1
a1

)])}
; (3.10)

U
(
z′(ã);zo)≡ inf

j∈{1,··· ,K},
l∈{0,··· ,L−1}

{
φ

j,l
(

z′
[
a j

(
τ

l
a1

)])}
. (3.11)

Since the orbit Oa1 depends on the initial point a1, at which z′ is normalized, the bounds are

functions of zo. It is useful to point out that for each j and l, z′
[
a j

(
τ l

a1

)]
is a strictly increasing

function of zo under Assumption 2-(iv). Note that when the CDFs with different N js are far away from

each other, the orbit Oa1 may be finite, thus the associated bounds are also finite. Thus, the tightest

pair can be taken as the maximum of all lower limits and the minimum of all upper limits. In contrast,

when the CDFs are close to each other, the orbit Oa1 can become infinite. Consequently, we can derive

an infinite number of bounds and identify the most stringent ones by computing the infimum and

supremum. In this case, these preliminary bounds might be relatively narrow and informative even

without point identification results.

Pointwise Sharp Bounds
We now delve into the discussion of how the preliminary bounds can be refined. Again, we focus

on the target ã. For the subsequent analysis, we assume it to be the τ l̃
ã-th quantile of some G j̃.

21 When

establishing the preliminary bounds for z′(ã), we only use the point identified z′ on the orbit Oa1 .

However, more information is available: consider the interval
(
τ l̃

a1,τ
l̃+1
a1

)
that contains τ l̃

ã.22 Although

at the two endpoints, z′
[
a j̃(·)

]
is point identified following Lemma 5, these two endpoints are distant

21 If ã falls into the support of multiple CDFs, pick anyone. See Footnote 17.

22 Note that we only need to consider the interval
(
τ l̃

a1 ,τ
l̃+1
a1

)
, since the construction of preliminary bounds already accounts

for other intervals such as
(
τ l

a1 ,τ
l+1
a1

)
for a general l.
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from τ l̃
ã. In contrast, for τ ∈

(
τ l̃

a1,τ
l̃+1
a1

)
but τ ̸= τ l̃

ã, while z′
[
a j̃(τ)

]
is only partially identified, this τ is

closer to τ l̃
ã relative to τ l̃

a1 .

Specifically, from the preliminary bounds in Proposition 3, we can bound z′
[
a

j̃
(τ)
]

as:

z′
[
a j̃ (τ)

]
∈

[
L
(

z′
[
a j̃ (τ)

]
;zo
)
, U

(
z′
[
a j̃ (τ)

]
;zo
)]

. (3.12)

Next, if we change the initial point from a1 to be a j̃ (τ), we obtain a different set of lower and

upper bounds on the target z′(ã) as:

z′ (ã) ∈

[
L
(

z′(ã);z′
[
a j̃ (τ)

])
, U

(
z′(ã);z′

[
a j̃ (τ)

])]
.

However, in the above bounds, z′
[
a j̃ (τ)

]
is only partially identified as in (3.12). Combined with the

observation that the preliminary lower and upper bounds from the formulas in (3.10) and (3.11) are

strictly increasing in zo, we can bound z′(ã) in an alternative way through inequality scaling:

z′(ã) ∈

[
L

(
z′(ã);L

(
z′
[
a j̃ (τ)

]
;zo
))

,U

(
z′(ã);U

(
z′
[
a j̃ (τ)

]
;zo
))]

. (3.13)

Actually for each τ ∈
(
τ l̃

a1,τ
l̃+1
a1

)
\
{

τ l̃
ã
}

, a new pair of bounds in the form of (3.13) can be established

for z′(ã). Due to the arbitrariness of τ , pooling all such bounds generated from each τ together can

potentially improve the bounds for z′(ã) when compared to the preliminary bounds.

Moreover, since z′
[
a j̃ (τ)

]
’s bounds can also be improved by employing the already refined bounds

on z′(ã) in a similar fashion, this process can iterate until convergence happens, which are characterized

by fixed points in functional analysis:

LL
(
z′(ã);zo)= sup

τ∈
[
τ l̃

a1 ,τ
l̃+1
a1

]
,

τ ̸=τ l̃
ã

{
L
(

z′(ã);LL
(

z′
[
a j̃ (τ)

]
;zo
))}

; (3.14)

and

UU
(
z′(ã);zo)= inf

τ∈
[
τ l̃

a1 ,τ
l̃+1
a1

]
,

τ ̸=τ l̃
ã

{
U
(

z′(ã);UU
(

z′
[
a j̃ (τ)

]
;zo
))}

, (3.15)

where LL(·; ·) and UU(·; ·) denote the final bound functions. These two final bound functions can

be derived from the following two fixed-point problems, leveraging the monotonicity of the quantile

function a j̃(·) and the model primitive z′(·):

LL(x;zo) = sup
y∈[z,z̄],

y̸=x

{
L
(

x;LL(y;zo)
)}

; (3.16)
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and

UU (x;zo) = inf
y∈[z,z̄],

y̸=x

{
U
(

x;UU (y;zo)
)}

, (3.17)

where z ≡ z′
[
a j̃
(
τ

l̃+1
a1

)]
and z̄ ≡ z′

[
a j̃
(
τ l̃

a1

)]
. Note that the domain of the two functions [z, z̄] is also

the image of the two functions. In addition, we have LL(z̄;zo) =UU (z̄;zo) and LL(z;zo) =UU (z;zo) ,

since z′ is point identified at the two endpoints, implying the compactness of the functional space.

The next lemma states the existence of the two functions LL(·;zo) and UU(·;zo) via the Schauder

fixed-point theorem in functional analysis (see Schauder (1930) and Bonsall (1962)).

Lemma 6 When the nonfreeness property does not hold, under Assumptions 1-3 and the normalization

that z′(ã) ≡ zo, consider an action distribution G(·|·) ∈ G . Then the two functions LL(·;zo) and

UU(·;zo) defined implicitly in the two functional fixed-point problems (3.16) and (3.17) have at least

one solution.

Lemma 6 implies that for any ã ∈ Supp(a) \Oa1 , there exist at least one lower and one upper

bounds for z′ (ã). Furthermore, these bounds, which utilize the information beyond the identification

result on the orbit Oa1 , are weakly tighter than those in Proposition 3. If multiple solutions exist, we

can always select the pair that produces the tightest bounds by taking the upper envelope of all final

lower bounds and the lower envelope of all final upper bounds.

The bounds on z′ implies those on F . This is because for each j̃ ∈ {1, · · · ,K} the inverse strategy

function ξ j̃(·)≡ ξ

(
a,z′(a)

∣∣∣N j̃

)
in (3.4) is strictly decreasing in z′ (a) for a fixed a under Assumption

2-(iv). Hence, the bounds on z′(ã) translate to those on ξ
−1
j̃ (t̃) using monotonicity arguments, such

that s j̃(t̃) = ã (thus ξ j̃(ã) = t̃ ) and ã is one equilibrium action with the number of players being N j̃.

Since G j̃ is also strictly increasing by Proposition 2-(iii), for this j̃, we derive one pair of bounds on

F (t̃) = G j̃

(
ξ
−1
j̃ (t̃)

)
. Importantly, under the exclusion restriction (Assumption 3), the above argument

holds for each j̃ ∈ {1, · · · ,K}, and finally, we pool all bounds generated from each j̃ together to further

refine the bounds on F (t̃).

As a result, we have the following main theorem that gives the final bounds of z′ and F on the rest

of their respective supports: Supp(a)\Oa1 and [t, t̄]\{t (τ0)) , · · · , t (τL)}. This theorem also shows

that these are the pointwise sharp bounds on z′ at any fixed ã and on F at any fixed t̃.

Theorem 2 When the nonfreeness property does not hold, under Assumptions 1-3 and the normaliza-

tion that z′(a1)≡ zo, consider an action distribution G(·|·) ∈ G . Then z′(·) and F(·) are nonparametri-

cally partially identified on the supports Supp(a)\Oa1 and [t, t̄]\{t (τ0)) , · · · , t (τL)}, respectively.

Specifically,
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(i) for ã ∈ Supp(a) \Oa1 , let ã = a
j̃

(
τ l̃

ã
)
. If τ l̃

ã ∈
(
τ l̃

a1,τ
l̃+1
a1

)
, denote the classes of solutions to the

two problems defined in (3.16) and (3.17) as L and U , respectively. Then z′ (ã) ∈
[
LBz′(ã),UBz′(ã)

]
,

where

LBz′(ã) ≡ sup
{

LL∗
(

z′ (ã) ;zo
)

: LL∗ ∈ L

}
; (3.18)

UBz′(ã) ≡ inf
{

UU∗
(

z′ (ã) ;zo
)

: UU∗ ∈ U

}
. (3.19)

Moreover,

(ii) for t̃ ∈ [t, t̄]\{t(τ0), · · · , t(τL)}, we have F(t̃) ∈
[
LBF(t̃),UBF(t̃)

]
, where

LBF(t̃) ≡ max
j̃∈{1,··· ,K}

G j̃

(
LB

ξ
−1
j̃ (t̃)

)
;

UBF(t̃) ≡ min
j̃∈{1,··· ,K}

G j̃

(
UB

ξ
−1
j̃ (t̃)

)
,

where for j̃ ∈ {1, · · · ,K},

LB
ξ
−1
j̃ (t̃) ≡

(
ξ
∗
j̃

)−1
(

ξ
−1
j̃ (t̃),UB

z′
[
ξ
−1
j̃ (t̃)

]) ;

UB
ξ
−1
j̃ (t̃) ≡

(
ξ
∗
j̃

)−1
(

ξ
−1
j̃ (t̃),LB

z′
[
ξ
−1
j̃ (t̃)

]) .

Finally, these bounds are sharp.

Theorem 2 provides the best nonparametric bounds on the model primitives z′ and F . Take z′ as an

example, a lower (upper) bound is called pointwise sharp if for all ã that is partially identified, we can

always construct a function ẑ′ such that ẑ′ (ã) is arbitrarily close to this lower (upper) bound and all

the restrictions given by the data and the model hold (see the definition in Nelson, Molina, Lallena,

and Flores (2004), Tankov (2011), and Bartl, Kupper, Lux, Papapantoleon, and Eckstein (2022)).

The proof showing the pointwise sharpness of these bounds follows this definition and is similar to

that of Theorem 3.2 in D’Haultfœuille and Février (2020) but more involved. This is because the

bounds derived in their Theorem 3.2, which mirrors our preliminary bounds in Proposition 3, cannot

be further refined, as these bounds are the same for all the points that are partially identified, and thus

are pointwise sharp. In contrast, our iterative procedure can in general improve the preliminary bounds

by generating weakly tighter bounds.

3.4 Discussion of Nonparametric Identification Results
This subsection serves as a concluding remark of Section 3. Specifically, we aim to discuss when

the point or partial identification is achieved based on the results of the previous subsections.

First of all, the nonfreeness property in Definition 2 is a sufficient condition for the point identifica-
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tion results of the model primitives. An important question to consider is whether point identification

is achievable when the nonfreeness property fails, and this is answered in the following proposition.

Proposition 4 When the nonfreeness property does not hold, under Assumptions 1-3, consider an

action distribution G(·|·) ∈ G . Then ∀a ∈ Supp(a),

(i) if Oa is discrete in Supp(a), z′ and F are partially identified on Supp(a) and [t, t̄], respectively;

(ii) if Oa is dense in Supp(a), z′ and F are point identified on Supp(a) and [t, t̄], respectively.

Proposition 4 distinguishes between point and partial identification based on the distribution of Oa

within its superset Supp(a), when the nonfreeness property is not satisfied and Oa ⊂ Supp(a) under

Lemma 2.23 When Oa is dense in Supp(a), any ã ∈ Supp(a) either belongs to Oa or is a limit point

of a sequence {an} ⊂ Oa such that limn→∞ an = ã. In the former case, the point identification of z′ at

ã follows Lemma 1, and in the latter case, z′ (ã) = limn→∞ z′ (an) is also point identified due to the

continuity of z′(·).
Proposition 4 is high level. Theoretically, distinguishing between cases (i) and (ii) is a difficult

task that typically demands a thorough analysis of the specific model at hand. D’Haultfœuille and

Février (2015) are able to establish the point identification of a triangular nonseparable model if the

nonfreeness property fails under their Assumption 4 (regularity and nonperiodicity). They show that

the nonperiodicity condition (which requires K ≥ 3) can be treated as a rank condition, under which

the orbit Oa of any a is dense in Supp(a) with the aid of Hölder’s and Denjoy’s theorems in group

and dynamic systems.24 However, the nonperiodicity condition is not sufficient for point identification

in our model. Specifically, the support of the equilibrium action a varies with the number of players

N in our model (see Proposition 1-(ii) and Definition 1-(iii)), while the support of the endogenous

variable X (analogous to our equilibrium action a) is independent of the instrument Z (analogous

to our exogenous number of players N) denoted as [x, x̄] with −∞ ≤ x < x̄ ≤ ∞ in their model (see

Assumption 3-(i) in D’Haultfœuille and Février (2015)).

Instead of seeking sufficient conditions for the density of Oa as in D’Haultfœuille and Février

(2015), we adopt an alternative approach. In Section 3.3, we characterize sharp bounds on a pointwise

base when nonfreeness does not hold. The subsequent corollary demonstrates that when Oa is dense

in Supp(a) (thus case (iii) in Proposition 4), the preliminary bounds in Proposition 3 collapse to a

23 Proposition 4 covers all possible scenarios, as it is not feasible for Oa to be discrete in one part and dense in another. This
is due to the fact that the density of a subset of Oa will propagate throughout the entire orbit based on its construction.
Consequently, Oa can only be either discrete or dense within Supp(a).

24 Note that the models in this paper and D’Haultfœuille and Février (2015) are drastically different: we consider a general
Bayesian game, while they study a triangular nonseparable model.
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singleton.

Corollary 1 When the nonfreeness property does not hold, under Assumptions 1-3 and the normal-

ization that z′(ã) = zo, consider an action distribution G(·|·) ∈ G . If further Oa1 is dense in Supp(a),

then for ã ∈ Supp(a)\Oa1 , the bounds in Proposition 3 reduce to a singleton:

L
(
z′(ã);zo)=U

(
z′(ã);zo) ,

and thus, z′ is point identified on Supp(a). Further, F is also point identified on [t, t̄].

Corollary 1 carries great significance as it illustrates that the preliminary (and the pointwise

sharp) bounds are valid regardless of whether Oa1 is distributed densely or discretely within Supp(a).

This highlights the advantage of our bounds, as they can achieve point identification results without

relying on ex-ante sufficient conditions. This flexibility is particularly valuable as it circumvents the

challenging task of determining such conditions and allows us to obtain meaningful estimates even in

situations where the density of Oa1 is not precisely known.

4 Illustration when K = 2
We have so far established partial and point identification results of model primitives (z′ and F) for

a general K. In this section, we apply these identification approaches to the case when K = 2, which

sheds light on the numerical illustration in subsection 4.2. To simplify the notation, suppose N takes

two values N1 and N2, with the corresponding action CDFs G1 and G2 respectively. The associated

support of a is Supp(a)≡ [a1, ā1]∪ [a2, ā2].

4.1 Point and Partial Identification when K = 2
The discussion after Definition 2 shows that whether we have point or partial identification when

K = 2 depends completely on whether G1 and G2 cross or not. In the following, we first illustrate the

point identification of z′ when G1 and G2 cross with each other. We focus on the case when they cross

once, as the case with multiple crossings is a straightforward adaption of this one-crossing case.

We assume G1 and G2 cross once as in Figure 2, thus satisfying the nonfreeness property, as the

crossing point is the fixed point of λ12: λ12(aIP) = aIP.

For ease of exposition, we normalize z′ at aIP: z′
(
aIP) ≡ zo. Then, for any target ã ∈(

aIP,max{ā1, ā2}
)
, the sequence

{
λ n

21 (ã)
}

n∈N is decreasing and converges to aIP. Hence, the

function value z′ at ã can be point identified as z′ (ã) = limn→∞ γn
21 (z

o), which holds by the continuity

of z′ in Assumption 2-(ii). Similarly, for any target ã ∈
(
min{a1,a2},aIP), the sequence

{
λ n

12 (ã)
}

n∈N

is increasing and converges to aIP. Hence, the function value z′ at ã can be point identified as
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Figure 2: Point identification if G1 and G2 cross once.

0 a

G(·)

1
G2(·)G1(·)

a1a2 ā1 ā2aIP

τ0

ãλ21(ã)λ 2
21(ã)

z′ (ã) = limn→∞ γn
12 (z

o), which holds by the continuity of z′ in Assumption 2-(ii). Consequently, we

point identify z′(ã) for all ã ∈ Supp(a). In addition, the point identification of z′ leads to that of F

following Theorem 1.

Next, we briefly address how the point identification results can be obtained if G1 and G2 intersect

multiple times at
{

a1, · · · ,aM}, where a1 ≤ ·· · ≤ aM. Again, for ease of exposition, we normalize z′

at aM without loss of generality. These fixed points partition Supp(a) into non-overlapping regions.

For one target ã from the top region denoted as
(
aM,max{ā1, ā2}

)
, we can always point identify z′(ã)

by the same approach as shown in Figure 2. Then we move to the next region
(
aM−1,aM), since z′(ã)

at each ã from this region is also point identified as above by constructing a sequence increasingly

converging to aM, we can also construct another sequence decreasingly converging to aM−1 from this

ã and point identify aM−1 by the continuity of z′. Repeating this process, we can further identify z′

at any ã that is not a fixed point along with all fixed points, thus achieving point identification of z′

on Supp(a). Again, the point identification of z′ leads to that of F . One thing worth noting for this

multiple-crossing case is that the sequence from one ã and converges to a fixed point is not necessarily

unique as one can choose a different fixed point as the limit, but all such sequences must uniquely

define z′(ã). See the discussion in Guerre, Perrigne, and Vuong (2009).

Subsequently, we turn to the discussion of the partial identification. No crossing of G1 and G2 is

equivalent to G2 stochastically dominating G1 at the first-order or vice versa, thus the nonfreeness

property does not hold, and the orbit Oa for any a ∈ Supp(a) is finite. When K = 2, it is also

notable that this orbit is a monotone sequence as shown in Figure 3. Therefore, we can simplify

the characterization of the bounds on z′, which differs slightly from the approach used in Section
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3.3. Without loss of generality, let us assume G2 first-order stochastically dominates G1. Give the

normalization that z′ (a1)≡ zo, the orbit Oa1 is shown in the following Figure 3a:

Oa1 =
{

a1,λ12 (a1) ,λ
2
12 (a1) ,λ

3
12 (a1) ,λ

4
12 (a1)

}
,

The function values of z′ evaluated on Oa1 are point identified following Lemma 1 (or Lemma 5):

Bzo =
{

zo,γ12 (zo) ,γ2
12 (z

o) ,γ3
12 (z

o) ,γ4
12 (z

o)
}
,

where Bzo is a new orbit defined as: Bzo ≡ {γ(zo)|γ ∈ Γzo}.

Figure 3: Partial identification if G1 and G2 do not cross.
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(a) Partial identification: identified values.
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12(ã)λ̃
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12(ã)

(b) Partial identification: how to derive bounds.

Suppose our target is to bound z′ (ã), where ã ∈
(
a1,λ12 (a1)

)
. In order to characterize the bounds

on z′ (ã), we first construct the preliminary bounds following Proposition 3 via the point-identified orbit

Oa1 (and Bzo), then propose a second-step iterative algorithm that refines the first-step preliminary

bounds and converges to the fixed points stated in Lemma 6, based on which we derive the final

pointwise sharp bounds following Theorem 2.

Starting from ã, the orbit Oã also has a finite number of elements and is a monotone sequence, as

shown in Figure 3b and expressed as:

Oã =
{

ã, λ̃ 12 (ã) , λ̃
2
12 (ã) , λ̃

3
12 (ã) , λ̃

4
12 (ã)

}
.

Each element in this orbit satisfies:

λ̃
l
12 (ã) ∈

(
λ

l
12 (a1) ,λ

l+1
12 (a1)

)
∀l ∈ {0,1,2,3} , and

λ̃
4
12 (ã)> λ

4
12 (a1) .

(4.1)
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Therefore, the function values of z′ on Oã can be expressed as:

Bz′(ã) =
{

z′ (ã) , γ̃12
(
z′ (ã)

)
, γ̃2

12
(
z′ (ã)

)
, γ̃3

12
(
z′ (ã)

)
, γ̃4

12
(
z′ (ã)

)}
.

We want to note here that the generations of Oã and Bz′(ã) rely on λ̃ 12 and γ̃12 that are different from

those to generate Oa1 and Bzo , i.e., λ12 and γ12, because they depend on different sequences of as: one

on Oa1 and the other on Oã.

We can derive the upper and lower bounds for each element in Bz′(ã) due to the shape restriction

on z′ imposed by Assumption 2-(iii):

γ̃
l
12
(
z′ (ã)

)
∈
[
γ

l+1
12 (zo) ,γ l

12 (z
o)
]
∀l ∈ {0,1,2,3} , and

γ̃
4
12
(
z′ (ã)

)
≤ γ

4
12 (z

o) .

Further, note that each element in Bz′(ã) can be mapped back to z′ (ã) as z′ (ã) =
(

γ̃ l
12

)−1(
γ̃ l

12
(
z′ (ã)

))
.

Since γ12 is strictly increasing under Assumption 2-(iv), we can convert the bounds on each element in

Bz′(ã) to those on z′ (ã):

z′ (ã) ∈
[(

γ̃
l
12
)−1(

γ
l+1
12 (zo)

)
,
(
γ̃

l
12
)−1(

γ
l
12 (z

o)
)]

∀l ∈ {0,1,2,3} , and

z′ (ã)≤
(

γ̃
4
12

)−1(
γ

4
12 (z

o)
)
.

And we can derive the first-step lower and upper bounds of z′ (ã) as:

L0
(
z′ (ã) ;zo)≡ max

{
γ12 (zo) ,

(
γ̃12
)−1(

γ
2
12 (z

o)
)
,
(
γ̃

2
12
)−1(

γ
3
12 (z

o)
)
,
(
γ̃

3
12
)−1(

γ
4
12 (z

o)
)}

; (4.2)

U0
(
z′ (ã) ;zo)≡ min

{
zo,
(
γ̃12
)−1(

γ12 (zo)
)
,
(
γ̃

2
12
)−1(

γ
2
12 (z

o)
)
,
(
γ̃

3
12
)−1(

γ
3
12 (z

o)
)
,
(
γ̃

4
12
)−1(

γ
4
12 (z

o)
)}

, (4.3)

where the subscript 0 indicates this is the first step.

The bounds in (4.2) and (4.3) can be further refined by the following iterative algorithm (where L j

and U j represent the constructed bounds at the j-th iteration):

Step 1: For each â ∈
(
a1,λ12 (a1)

)
but â ̸= ã, we derive the first-step lower and upper bounds for

z′ (â): L0 (z′ (â) ;zo) and U0 (z′ (â) ;zo).

Step 2: Using this â in the same way as a1, we construct a new pair of lower and upper bounds for

z′ (ã): L(z′ (ã) ;z′ (â)) and U (z′ (ã) ;z′ (â)), which are used in each iteration.

Step 3: In the j-th iteration where j ≥ 1, the updated lower and upper bounds on z′ (ã) are as follows:

L j
(
z′ (ã) ;zo)≡ max

{
L j−1

(
z′ (ã) ;zo) , sup

â∈
(

a1,λ12(a1)
)

â̸=ã

{
L
(

z′ (ã) ;L j−1
(
z′ (â) ;zo))}};
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U j
(
z′ (ã) ;zo)≡ min

{
U j−1

(
z′ (ã) ;zo) , inf

â∈
(

a1,λ12(a1)
)

â̸=ã

{
U
(

z′ (ã) ;U j−1
(
z′ (â) ;zo))}}.

Step 4: By a symmetric argument, we also update the bounds on z′ (â) :

L j
(
z′ (â) ;zo)≡ max

{
L j−1

(
z′ (â) ;zo) , sup

ã∈
(

a1,λ12(a1)
)

ã̸=â

{
L
(

z′ (â) ;L j−1
(
z′ (ã) ;zo))}};

U j
(
z′ (â) ;zo)≡ min

{
U j−1

(
z′ (â) ;zo) , inf

ã∈
(

a1,λ12(a1)
)

ã̸=â

{
U
(

z′ (â) ;U j−1
(
z′ (ã) ;zo))}}.

Step 5: We repeat Steps 3-4 until all the bounds converge.

Step 6: If the iterative algorithm converges at multiple different points, we choose the tightest pair as

the final lower and upper bounds for z′ (ã).

Note that for other target ã where ã ∈
(

λ l
12 (a1) ,λ

l+1
12 (a1)

)
for l = 1,2,3 or ã > λ 4

12 (a1), we can

use the same approach to bound z′(ã) by noting that the orbit Oã has the same feature as (4.1).25

Lastly, the point and partial identification results on z′ lead to those on F following Theorem 2-(ii).

4.2 Numerical Exercise
In this subsection, we provide a numerical exercise of our point and partial identification results.

When K = 2, the Tullock contest model in Example 4 have both crossing and non-crossing patterns,

as discussed and numerically shown in Wasser (2013). Therefore, we choose the Tullock model for

illustration. According to Wasser (2013) and Ewerhart (2014), the interior equilibrium is reduced to

ti ·Ea−i

[
∑ j ̸=i a j

(ai +∑ j ̸=i a j)2

]
= c′(ai). (4.4)

Denote p = 1/t, which can be interpreted as the private cost, whose distribution is specified in this

numerical illustration following Wasser (2013).

Given the complexity of the iterative algorithm presented in Section 4.1 and the potential cumulative

numerical errors that may arise during the construction of bounds, we only present the preliminary

bounds obtained in the first step for the purpose of illustrating partial identification (Proposition 3).

25 This partial identification approach to derive the preliminary bounds is also applied in D’Haultfœuille and Février (2020),
however, our bounds are more involved due to the generality of the class of Bayesian games we consider and the iterative
algorithm we propose. In contrast, their derived bounds are constants for all targets between two point identified values.
Additionally, we use K = 2 as an illustration and the results for K ≥ 3 can be found in Section 3.3, while they only focus
on K = 2. Lastly, the partial identification we derive for F pool all bounds from different N j together, while they do not,
thus conjecturally their bounds for F could be wider.
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It is important to emphasize that this numerical exercise underscores the strong dependence of our

identification approach on the exclusion restriction specified in Assumption 3, as elaborated below.

4.2.1 When the Exclusion Restriction Holds

We first consider the scenario when the exclusion restriction holds. p is assumed to follow a uniform

distribution on [0.5,2.5]. The true cost function is quadratic: c(x) = x2/2, leading to an identity cost

derivative function: c′(x) = x. We approximate the equilibrium effort strategy ν(p)≡ s(t) numerically

by a discrete function on a grid of points in [0.5,2.5]. The size of the grid is set to be g = 5000.26 And

the set of points is denoted as:

p̂ = {p1, p2, · · · , pg}.

When the exclusion restriction holds, we consider the same p̂ for different numbers of contestants:

N = 2, N = 3, N = 5, and N = 6. The numerical equilibrium efforts distributions are shown in Figure 4.

When N increases from 2 to 3, the change corresponds to the one-crossing pattern; when N increases

from 3 to 5 (or 6), the non-crossing pattern emerges. We apply the point identification approach to the

crossing pattern, e.g., N ∈ {2,3} to identify the cost derivative function over the support of equilibrium

efforts under N = 3. We also apply the partial identification result to two non-crossing patterns, e.g.,

N ∈ {3,5} and N ∈ {3,6}, in order to identify the cost derivative function over the same support. In

addition, we show identification results of the distribution of the private type t, denoted as F .

For point identification, we normalize the cost derivative at the intersection point to be the effort

itself, since the true cost derivative function is an identity function represented by the 45-degree line.

As shown in Figure 5a, the identified cost derivative function is more accurate as the effort value

being evaluated is closer to the intersection point. The reason is that the point identification result

relies on the action needed to link any a to the intersection point, as shown in Figure 2 where infinite

composition(s) of the action λ ji is necessary. And this can cause the numerical error induced by

calculating the empirical CDF and the empirical quantile to accumulate. As the effort being identified

gets further away from the intersection point, the cumulative error gets larger. The corresponding

identified private type distribution is shown in Figure 6a, which shows similar patterns as the result of

c′: the numerical error accumulates as one moves away from the intersection point.

The partial identification results are shown in Figure 5b, where the upper and lower bounds of the

cost derivative function are displayed. First of all, starting from the lower boundary of the support

26 We also conduct the analysis when the number of grid points is g = 500 or g = 1000. It becomes evident that as the
number of grid points increases, the accuracy of the point identification result improves. To save space, we do not report
the results for g = 500 and g = 1000; however, these findings are available upon request.
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Figure 4: When the exclusion restriction holds: effort distributions with different N

of equilibrium efforts under N = 3, there is a finite set of effort values evaluated at which the cost

derivatives are point identified. The bounds are thus derived for each section between two point

identified values. Compared to N = 6, the effort distribution with N = 5 is closer to that with N = 3.

Therefore, there are more effort values at which the cost derivatives are point identified resulting in

tighter bounds. The corresponding partial identification results of the private type distribution are

shown in Figure 6b, which again shows similar patterns as those of c′.27

Figure 5: When the exclusion restriction holds: point and partial identification results of c′.

(a) Point identification of the cost derivative
function.

(b) Partial identification of the cost derivative
function.

27 Here, we do not pool the bounds derived from different sets of Ns together, as the identification is not exact, and the
cumulative numerical errors make the bounds not compatible with each other for some regions of t.
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Figure 6: When the exclusion restriction holds: point and partial identification results of F .

(a) Point identification of the private type
distribution.

(b) Partial identification of the private type
distribution.

A few remarks regarding the results from the point identification and the partial identification

approaches are in order. First, the point identification results are subject to the accumulation of

numerical errors. In contrast, the bounds in the partial identification case are derived from the pairs

of point identified values that are finite; hence the numerical error seems smaller relative to the case

of point identification. Second, in the point identification case the normalized point is chosen to be

the intersection point; while in the partial identification case, the normalized point is always the lower

boundary of the support of equilibrium efforts under N = 3. Figure 7 shows the results from the point

identification (N ∈ {2,3}) and the partial identification (N ∈ {3,5}). Roughly speaking, the two sets of

results are compatible with each other, even though the point identification result is further away from

the true function (45-degree line) as one moves away from the intersection point due to the cumulative

numerical error. Nevertheless and importantly, in a local area around the intersection point, the point

identification result is always inside the derived bounds, which holds true for both c′ and F .

4.2.2 When the Exclusion Restriction Does Not Hold

When the exclusion restriction does not hold, the private cost distribution varies as N increases. We

assume that when N = 2, the cost follows a truncated standard normal distribution in [0.5,2.5]; when

N = 3, the cost follows a uniform distribution in [0.5,2.5]; when N = 5, the cost follows a truncated

exponential distribution in [0.5,2.5]; when N = 6, the cost follows a truncated logistic distribution in

[0.5,2.5].

The distributions of equilibrium efforts are shown in Figure 8. We apply the point identification

approach to the one-crossing pattern, e.g., N ∈ {2,3} to identify the cost derivative function and the
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Figure 7: Comparison of the point and partial identification when the exclusion restriction holds.

(a) The cost derivative function. (b) The private type distribution.

private type distribution over the support of equilibrium efforts and private types under N = 2 (Figures

9a and 10a). We also apply the partial identification result to two non-crossing patterns, e.g., N ∈ {2,5},

and N ∈ {2,6}, in order to identify the cost derivative function and the private type distribution under

N = 2 (Figures 9b and 10b).

Figure 8: When the exclusion restriction does not hold: effort distributions with different N

While the bounds from the partial identification shown in Figures 9b and 10b seem closer to the

true function than the point identification result, the 45-degree line lies outside the identified sets.

The point identification results shown in Figures 9a and 10a are substantially different from the true

function: the point identified cost derivative function is not even increasing, and the point identified
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private type distribution is now a correspondence rather than a function with incorrect support. When

the exclusion restriction does not hold, the bounds from different Ns are not compatible with each

other. The derived bounds from N = 2 and N = 5 are not tighter and do not lie within those from

N = 2 and N = 6, which is in sharp contrast with the results in Figures 5b and 6b. As a result, this

can be used as a basis to propose a test for the exclusion restriction, provided that nonparametric set

inference methods are developed.

Figure 9: When the exclusion restriction does not hold: point and partial identification results of c′.

(a) Point identification of the cost derivative
function.

(b) Partial identification of the cost derivative
function.

Figure 10: When the exclusion restriction does not hold: point and partial identification results of F .

(a) Point identification of the private type
distribution.

(b) Partial identification of the private type
distribution.

32



5 Extensions
5.1 Corner Solutions

In the previous sections, we only consider the interior solution case, where the first order condition

yields Equation (3.3). However, in some empirical applications, corner solutions may occur. In this

subsection, we use the contest model in Example 4 to discuss the nonparametric identification of the

unknown structure [F,c′], given the exclusion restriction, when the contestant’s equilibrium effort is

allowed to be zero.28 The first-order condition is now characterized by the Krush-Kuhn-Tucker (KKT)

conditions:

ti ·Ea−i

[
∑ j ̸=i a j

(ai +∑ j ̸=i a j)2

]
= c′(ai), i f ai > 0, (5.1)

ti ·Ea−i

[
∑ j ̸=i a j

(ai +∑ j ̸=i a j)2

]
≤ c′(ai), i f ai = 0. (5.2)

Therefore, there exist both “inactive” contestants who make zero effort and obtain zero expected

payoffs, as well as “active” ones whose efforts are strictly positive. Ewerhart (2014) shows that there

exists a unique, symmetric, and monotone equilibrium strategy s(·) in the above Tullock contest, and

at least one contestant remains active in equilibrium. For active contestants, s(·) is strictly increasing

since the strict supermodularity condition (Assumption 2-(iv)) is satisfied.

To apply the nonparametric identification approaches proposed in Section 3, we can proceed in the

same way as before, by looking at how the effort distributions behave for the private types who are

active when N varies exogenously.

It is worth noting that in the corner solution case, c′(·) and F(·) can only be point or partially

identified over a restricted support, due to the reason that the identification approaches can only be

adopted for strictly positive efforts in Equation (5.1). For instance, in the Tullock contest, let τ∗j be the

probability corresponding to the upper boundary of zero efforts in the contest with N j contestants (also

the lower boundary of non-zero efforts in this contest). Then c′(·) is only identified over the restricted

support ∪K
j=1

[
a j(τ

∗
j ), ā j

]
, and F(·) is identified over the restricted support

[
min j∈{1,··· ,K}

{
t(τ∗j )

}
, t̄
]
.

5.2 Asymmetric Private Type Distribution
We now consider the asymmetric case where each player i has her private type drawn from different

Fi(·) over the support [t i, t̄i] with Fi(·) ∈ F in Assumption 1. We maintain the exclusion restriction as

in Assumption 3. The strictly MPSNE of player i is denoted by si(ti) = ai, with equilibrium action

CDF Gi(·|N) over the support [ai(N), āi(N)], with Gi(·|N) ∈ G . The first order condition (an adaption

28 Here we focus on the identification of c′(·), the derivative of the cost function.
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of Equation (3.3)) now becomes:

ti(τ) ·Ea−N

[
∂x(ai(τ),a−N)

∂ai

∣∣∣∣N]+Ea−N

[
∂y(ai(τ),a−N)

∂ai

∣∣∣∣N]+ z′ [ai(τ)] = 0, (5.3)

where the bolded Ea−N denotes the expectation over the joint action distribution except player i:

G−i(·, · · · , ·|N) = Π j ̸=iG j(·|N). We consider the interior solution case.

Our identification problem is to recover the structure [F1(·), · · · ,FN j(·);z′(·)], given the equilibrium

action vector
{

a j,1, · · · ,a j,N j

}
, and action CDFs

{
G j,1(·), · · · ,G j,N j(·)

}
for j ∈ {1 · · · ,K}.

Under Assumption 3, it is crucial to cancel out ti(τ) in Equation (5.3) above, as in the beginning

of Section 3.1. Therefore, one necessary constraint to apply the identification approach is to assume

that there are N0 common players with 1 ≤ N0 ≤ min j∈{1,··· ,K}
{

N j
}

. We assume that these common

players are indexed as the first N0 players. The point/partial identification procedure is thus as follows:

Step 1: Consider any pair (N1,N2) ∈ N 2. Choose an arbitrary common player i, with private type
distribution Fi(·). By canceling out ti(τ), we get the following equation

Ea−N1

[
∂y(a1,i(τ),a−N1 )

∂a1,i

∣∣∣∣N1

]
Ea−N2

[
∂x(a2,i(τ),a−N2 )

∂a2,i

∣∣∣∣N2

]
−Ea−N2

[
∂y(a2,i(τ),a−N2 )

∂a2,i

∣∣∣∣N2

]
Ea−N1

[
∂x(a1,i(τ),a−N1 )

∂a1,i

∣∣∣∣N1

]
=z′ [a2,i(τ)]Ea−N1

[
∂x(a1,i(τ),a−N1 )

∂a1,i

∣∣∣∣N1

]
− z′ [a1,i(τ)]Ea−N2

[
∂x(a2,i(τ),a−N2 )

∂a2,i

∣∣∣∣N2

]
.

Step 2: Applying the corresponding identification approaches in Section 3, z′(·) is nonparametrically

identified over ∪ j∈{1,··· ,K}
[
a j,i, ā j,i

]
, and Fi(·) is nonparametrically identified over [t i, t̄i], with

Fi(·) = G j,i

(
ξ
−1
j,i (·)

)
for j ∈ {1, · · · ,K}.

Step 3: Varying the index i within the group of common players, z′(·) is identified over

∪i∈{1,··· ,N0}∪ j∈{1,··· ,K}
[
a j,i, ā j,i

]
.29

Step 4: Choosing an arbitrary remaining contestant r, with private type distribution Fr(·). Thus when

a j,r ∈ ∪i∈{1,··· ,N0}∪ j∈{1,··· ,K}
[
a j,i, ā j,i

]
, the corresponding private type tr can be recovered. As

a result, Fr(·) is identified over such values of tr.

5.3 Asymmetric Function z
We now consider the asymmetric case where N players draw their private types from a common

CDF F(·) over [t, t̄], but have different functions zi(·) satisfying Assumption 2. Although the latent

private type distribution is common, each player i can have a different equilibrium strategy si(ti) = ai

with different equilibrium action CDF Gi(·|I) over [ai(N), āi(N)].

29 If the support ∪ j∈{1,··· ,K}
[
a j,i, ā j,i

]
of different common player i overlaps, varying the index i may potentially tighten the

bounds of z′(·) in the case of partial identification.

34



Suppose that there are N0 common players where 1 ≤ N0 ≤ min j∈{1,··· ,K}
{

N j
}

. We assume that

these common players are indexed as the first N0 players. The point/partial identification approach is

as follows:

Step 1: Consider any pair (N1,N2) ∈ N 2. Choose an arbitrary common player i, with the function
zi(·). By canceling out t(τ), we get the following equation

Ea−N1

[
∂y(a1,i(τ),a−N1 )

∂a1,i

∣∣∣∣N1

]
Ea−N2

[
∂x(a2,i(τ),a−N2 )

∂a2,i

∣∣∣∣N2

]
−Ea−N2

[
∂y(a2,i(τ),a−N2 )

∂a2,i

∣∣∣∣N2

]
Ea−N1

[
∂x(a1,i(τ),a−N1 )

∂a1,i

∣∣∣∣N1

]
=z′i [a2,i(τ)]Ea−N1

[
∂x(a1,i(τ),a−N1 )

∂a1,i

∣∣∣∣N1

]
− z′i [a1,i(τ)]Ea−N2

[
∂x(a2,i(τ),a−N2 )

∂a2,i

∣∣∣∣N2

]
.

Step 2: Applying the identification approach in Section 3, z′i(·) is nonparametrically identi-

fied over ∪ j∈{1,··· ,K}
[
a j,i, ā j,i

]
, and F(·) is nonparametrically identified over [t, t̄], with

F(·) = G j,i

(
ξ
−1
j,i (·)

)
for j ∈ {1, · · · ,K}.30

Step 3: Choose an arbitrary remaining contestant r. Thus from player r’s first order condition, z′r(·) is

identified over ∪ j∈{1,··· ,K}
[
a j,r, ā j,r

]
.

5.4 Asymmetric Private Type Distribution and Function z
We now consider the asymmetric Bayesian game, where player i has own private type CDF Fi(·)

over [t i, t̄i] and own function zi(·) satisfying Assumptions 1 and 2, respectively. Each player i has

a different equilibrium action strategy si(ti) = ai with a different action distribution Gi(·|N) over

[ai(N), āi(N)].

Suppose that there are N0 common players where 1 ≤ N0 ≤ min j∈{1,··· ,K}
{

N j
}

. In this setup, only

the private type CDFs {F1(·), · · · ,FN0(·)}, and functions {z1(·), · · · ,zN0(·)} of common players can be

nonparametrically and point/partially identified over their corresponding identified supports.

5.5 Asymmetric Function x
We now consider the extension to allow for each player i to have different xi(ai,a−i).31 It is

important to note that this function has to vary with N, which implies that for player i, when the number

of participants change, xi has to change as well, in order to cause the variation of the expectation

expressed as a multiple integral.

Since xi is assumed to be known to the researchers, its asymmetry does not add any more complica-

tion to the identification problem as it does not influence the cancellation of private type for common

players when the first-order conditions for common players are stacked, which is the key insight we

30 Varying the index i may potentially tighten the bounds of F(·) in the case of partial identification.

31 The same argument applies to when each player has own yi(ai,a−i), thus is omitted here.
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use in our identification strategy. Specifically, when asymmetric xi appears together with asymmetric

private type CDF Fi, the procedure in Section 5.2 can be adopted. Moreover, when both xi and zi are

asymmetric, we can utilize the procedure in Section 5.3. Lastly, when the functions xi, Fi and zi are all

asymmetric, the procedure in Section 5.4 can be applied.

Furthermore, as mentioned in Section 2.1, the deterministic and known function of ti appearing in

payoff functions in all three forms, i.e. mi(ti), can be relaxed to be asymmetric, for the same reason

as in the asymmetric xi case. As a result, asymmetric mi can be combined with asymmetric Fi or

asymmetric zi (along with asymmetric xi), which will not affect the identification results in this section.

5.6 Unobserved Heterogeneity
In this subsection, we discuss the extension of the benchmark model to the case with unobserved

game heterogeneity, which is modeled as a random variable U drawn independently from the CDF

FU(·) with the support denoted by U . The realization of the unobserved heterogeneity u is common

knowledge among players in the Bayesian game, but as econometricians we do not observe this u.

Thus conditional on this u, players act as in the setup of our benchmark model, since their private types

are conditionally independent. As a consequence, the properties of strictly MPSNE follow Proposition

1, given the conditional private type distribution F(·|u) ∈ F defined in Assumption 1. Therefore,

conditional on this u, the distribution of equilibrium actions denoted as G(·|u,N) satisfies the properties

in Definition 1, i.e. G(·|u,N) ∈ G for each N ∈ N . Thus, the identification problem now becomes

how to identify the unknown structure conditional on the realization U = u, together with the unknown

distribution of the unobserved heterogeneity, i.e. FU(·). Note that now the unknown private type’s

CDF is conditional on this u, thus F(·|u), while the other unknown function z(·) is unrelated to u.

In order to discuss the identification problem, we impose the following assumptions, which hold

throughout this section.

Assumption 4

(i) Conditional exclusion restriction: for all N ∈ N , F(·|u,N) = F(·|u).
(ii) Stochastic monotonicity restriction: conditional on u, the private type is strictly increasing in u

with respect to the first order.

There are two challenges in nonparametric identification of the model primitives with the unob-

served heterogeneity. First, we need to identify the distribution of actions conditional on the unobserved

heterogeneity and the distribution of the unobserved heterogeneity, given the unconditional distribution

of actions identified in the data, for each N. Second, after identifying the above distributions, we

have to know how to match the conditional distributions of actions for N j, denoted as G j(·|u), on the
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realization of the unobserved heterogeneity, or when G j(·|u) corresponds to the same realization u for

j ∈ {1, · · ·}, in order to apply the identification approaches described in Section 3.

Assumption 4-(ii) is needed for both discrete and continuous u in order to exploit support variation,

see Hu, McAdams, and Shum (2013), Gentry and Li (2014), and Grundl and Zhu (2019) in the auction

context. Particularly, the strict inequality is assumed to hold at the upper boundary of t, i.e., t̄(u) is

strictly increasing in u. In general, that the private type is strictly FOSD-increasing with respect to

the unobserved heterogeneity u does not necessarily imply that the equilibrium action is also FOSD-

increasing in u.32 If the Bayesian game under consideration is a game with strategic substitutes, or the

payoff function satisfies

∂ 2π(ai,a−i, ti)
∂ai∂a j

=
∂ 2x(ai,a−i)

∂ai∂a j
+

∂ 2y(ai,a−i)

∂ai∂a j
≤ 0, almost everywhere, ∀i ̸= j,

this stochastic monotonicity restriction on the private type with respect to the unobserved heterogeneity

implies that the equilibrium action at a fixed τ: a(τ;u) = s(t(τ);u) as a function of u, is increasing in

u. Specifically, at the upper boundary, or τ = 1, ā(u) is strictly increasing in u. After establishing the

monotonicity of the equilibrium action with respect to the unobserved heterogeneity, we can proceed to

discuss the identification problem; we need to distinguish between the cases of discrete and continuous

u, in order to extend Grundl and Zhu (2019) who deals with first-price auctions with risk aversion and

unobserved auction heterogeneity to our setting.

If u is discrete, with finite support, i.e., the support of u is 1,2, · · · ,U with U < ∞, we need at

least two N, thus, K ≥ 2; for each one, two randomly selected actions are observed. For different

us, the upper boundaries of observed actions are distinguishable. Thus, we can identify the U action

distributions conditional on one value of u for each N. Furthermore, the action distribution for each N

can be sorted by the upper boundaries of their supports. If two different numbers of players correspond

to the same u, they should have the same rank. Therefore, they should have the same private type

distributions conditional on this u. After matching the games on the value of u, we can apply the

identification approaches in the previous section to identify the private type distributions. By doing

this for each u, we can obtain the final identification.

If u is continuous, for each N we need three randomly selected actions. Besides, in order to use

the results on identification of triangular non-separable models, we need to impose an additional

32 An example can be found in Aryal and Zincenko (2023), who consider a Cournot-oligopoly model with private
information of firms and linear demand function faced by firms. They establish identification of the model primitives,
including the distribution of the unobserved heterogeneity. However, since their Cournot model does not have an
unknown function like the unknown cost function c(ai) in Example 1, our models are different and it is unclear whether
the strict monotonicity of equilibrium strategies still holds in our case.
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assumption that the lower boundary of the private type t(u) is also strictly increasing in u, together

with a normalization condition such as t(u) = u. With these extra conditions, we ensure that the lower

and upper boundaries of equilibrium actions are both strictly increasing with u, for each N. As a result,

we can adopt the support variation approach to identify the distribution of actions conditional on u,

together with the distribution of U . Moreover, it guarantees that G j(·|u) with different j is conditional

on the same u if the support has the same lower boundary, which fits into the identification approach

proposed in Section 3.

5.7 Endogenous Participation
Our identification strategy has relied on the exclusion restriction in the form of an exogenous

players’ participation (Assumption 3). However, this restriction is no longer valid if players’ private

types are influenced by the competition level of the game, i.e., the number of players. In this

subsection, we consider the case when there is unobserved heterogeneity ε at the game level that

affects players’ participation decisions, leading to the endogenous participation.33 Specifically, we

assume N = N(Z,ε), where Z is a vector of observed characteristics of the game. We discuss two

empirically related scenarios regarding the correlation between the observed Z and the unobserved ε .

The first scenario is when t ⊥⊥ ε|Z, thus the unobserved heterogeneity ε only affects players’

participation, but not their private types, because the distribution of private types F(·|Z,ε) = F(·|Z).
Thus for any given Z, we obtain the exclusion restriction F(·|N,Z) = F(·|Z), but in the equilibrium,

the action distribution G(·|N,Z) still depends on N. As a consequence, we can exploit the variation

from two numbers of players N1 < N2 as before, but note that now they have the same characteristics

Z. Our point and partial identification approaches can thus be adopted in a straightforward manner.

The second scenario is more involved, when the unobserved heterogeneity ε is correlated with the

private type.34 We assume the availability of instrumental variable W such that N = N(Z,W,ε), and

t ⊥⊥W |(Z,ε). As a result, the private type distribution satisfies F(·|Z,W,ε) = F(·|Z,ε). Thus for any

fixed (Z,ε), we want to utilize the exclusion restriction F(·|N,Z,ε) = F(·|Z,ε), in order to use the

33 For Bayesian game models, both theoretical and empirical studies on players’ participation have been limited. To the
best of our knowledge, the theoretical papers (Fu, Jiao, and Lu (2015), Gu, Hehenkamp, and Leininger (2019), and Jia
and Sun (2021)) that study players’ entry in contest models consider the complete information framework, thus not a
Bayesian game. On the empirical side, we only note a few exceptions including Kawai and Sunada (2015) who estimate
a dynamic model to analyze the campaign finance of electoral candidates, together with the challenger’s selective entry
decision and Zhao (2020) who constructs a contest model with both incomplete information and endogenous entry to
study the U.S. Senate elections. Therefore, our benchmark model has been tailored to the current state of the literature.
Nevertheless, we extend our benchmark result to the case of endogenous participation here.

34 Note that this situation is different from the case of the unobserved heterogeneity that enters directly players’ private
type distribution in Section 5.6. Here we consider the scenario where the unobserved heterogeneity affects private types
through players’ participation.
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identification approaches, because in equilibrium, the action distribution is G(·|N,Z,ε). We follow

Guerre, Perrigne, and Vuong (2009) to impose the following two conditions:

(i) ε = N −E[N|Z,W ].

(ii) W = h(X ,ε), where h(·, ·) is strictly increasing in ε , X ⊥⊥ ε , and X cannot be a subset of Z.

Under either one of the above conditions, we can identify ε as a first step, in order to identify

the other structure of the model. When condition (i) holds, N is known and E[N|Z,W ] is identified.

Therefore, ε can be treated as the error term and is identifiable. When condition (ii) holds, the func-

tion h(·, ·) can be identified following Matzkin (2003), and ε can be identified as the inverse of the

function, i.e., ε = h−1(X ,W ). After ε is recovered, for any given (Z,ε), under the exclusion restric-

tion F(·|N,Z,ε) = F(·|Z,ε), our identification approaches are applicable by noting that G(·|N,Z,ε)

depends on N.

6 Conclusions
In this paper, we have explored a general approach to studying nonparametric identification of

general Bayesian games with continuous payoff functions, which include many interesting applications.

We characterize conditions under which we can establish either point or partial identification of the

model primitives, which are the payoff function and the private type distribution. Our identification

results are positive. To be more precise, we show that under the exclusion restriction in the form

of an exogenous players’ participation, in general, point identification can be established when the

nonfreeness property holds. Conversely, when this property is not met, partial identification is generally

attainable, and pointwise sharp bounds are constructed. We also extend the identification results

to accommodate corner solutions, asymmetric players, unobserved heterogeneity, and endogenous

participation, thus making our results applicable to a broad class of empirically relevant Bayesian

games. As such, we have presented positive identification results and a general econometric framework

for the structural analysis of general Bayesian games.35

Since our identification results are constructive, they can provide a basis for nonparametric es-

timation and inference (including testing for the exclusion restriction as discussed in Section 4.2.2)

in the class of Bayesian games we consider. In the point identification case when the nonfreeness

property holds, the estimation method proposed in Zincenko (2018) in estimating the model primi-

tives in the first-price auction model with risk averse bidders can be extended to our case using our

35 While we focus on the games with incomplete information, games with complete information can also be included in our
framework. This can be seen from replacing the expected derivatives of function x(·, ·) appearing in the left hand side
difference of the two first order conditions in the equality relation (3.6) by just the derivatives of function x(·, ·), without
the expectation. This does not affect our identification approach; thus our identification result still holds.
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point identification results. On the other hand, in the partial identification case when the nonfreeness

property fails, the nonparametric bounds can be consistently estimated by replacing the bounds by the

nonparametric estimators of the point identified quantities. However, it raises new and challenging

questions about inference for nonparametrically partially identified models, as the recent advances

in inference on incomplete or partially identified econometric models have mainly focused on the

parametric or semiparametric framework (e.g. Chernozhukov, Hong, and Tamer (2007), Ciliberto and

Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), Galichon and Henry (2011), and Chesher

and Rosen (2017), among others), thus will be left for future research.36

36 D’Haultfœuille and Février (2020) establish consistency of their nonparametric estimator of the bounds, and suggest to
use bootstrap to make inference. They then use their nonparametric bound estimates to specify parametric forms for the
underlying structural elements and conduct structural estimation using the parametric approach.
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de Paula, Á., and Tang, X. (2012). Inference of Signs of Interaction Effects in Simultaneous Games
with Incomplete Information. Econometrica, 80(1), 143–172.

D’Haultfœuille, X., and Février, P. (2015). Identification of Nonseparable Triangular Models with
Discrete Instruments. Econometrica, 83(3), 1199–1210.

D’Haultfœuille, X., and Février, P. (2020). The Provision of Wage Incentives: A Structural Estimation
Using Contracts Variation. Quantitative Economics, 11, 349–397.

Diamond, P. A. (1982). Aggregate Demand Management in Search Equilibrium. Journal of Political
Economy, 90(5), 881–894.

Erikson, R. S., and Palfrey, T. R. (2000). Equilibria in Campaign Spending Games: Theory and Data.
American Political Science Review, 94(3), 595–609.

Ewerhart, C. (2014). Unique Equilibrium in Rent-Seeking Contests with a Continuum of Types.
Economics Letters, 125(1), 115–118.

Fey, M. (2008). Rent-Seeking Contests with Incomplete Information. Public Choice, 135, 225–236.

Fu, Q., Jiao, Q., and Lu, J. (2015). Contests with Endogenous Entry. International Journal of Game
Theory, 44(2), 387–424.

Galichon, A., and Henry, M. (2011). Set Identification in Models with Multiple Equilibria. Review of
Economic Studies, 78(4), 1264–1298.

Gentry, M. L., and Li, T. (2014). Identification in Auctions with Selective Entry. Econometrica, 82(1),
315–344.

Gerber, A. (1998). Estimating the Effect of Campaign Spending on Senate Election Outcomes Using
Instrumental Variables. American Political Science Review, 92(2), 401–411.

Gilens, M., Patterson, S., and Haines, P. (2021). Campaign Finance Regulations and Public Policy.

42



American Political Science Review, 115(3), 1074–1081.

Green, D. P., and Krasno, J. S. (1988). Salvation for the Spendthrift Incumbent: Reestimating the
Effects of Campaign Spending in House Elections. American Journal of Political Science, 32(4),
884–907.

Grundl, S., and Zhu, Y. (2019). Identification and Estimation of Risk Aversion in Frst-Price Auctions
with Unobserved Auction Heterogeneity. Journal of Econometrics, 210(2), 363–378.

Gu, Y., Hehenkamp, B., and Leininger, W. (2019). Evolutionary Equilibrium in Contests with
Stochastic Participation: Entry, Effort and Overdissipation. Journal of Economic Behavior and
Organization, 164, 469–485.

Guerre, E., Perrigne, I., and Vuong, Q. (2000). Optimal Nonparametric Estimation of First-Price
Auctions. Econometrica, 68(3), 525–574.

Guerre, E., Perrigne, I., and Vuong, Q. (2009). Nonparametric Identification of Risk Aversion in
First-Price Auctions under Exclusion Restrictions. Econometrica, 77(4), 1193–1227.

Haile, P., Hong, H., and Shum, M. (2003). Nonparametric Tests for Common Values in First-Price
Sealed-Bid Auctions. NBER Working Paper Series.

Haile, P. A., and Tamer, E. (2003). Inference with an Incomplete Model of English Auctions. Journal
of Political Economy, 111(1), 1–51.

He, M., and Huang, Y. (2021). Structural Analysis of Tullock Contests with an Application to U.S.
House of Representatives Elections. International Economic Review, 62(3), 1011–1054.

He, W., and Sun, Y. (2019). Pure-Strategy Equilibria in Bayesian Games. Journal of Economic Theory,
180, 11–49.
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