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3D.3 (a) We shall prove that for Every p € ﬁ: w2zl az0 andxe R+, if

X = x(p,w), then ax = x{p,aw). Note first that p-(ax) = aw, that is, ax is
alfordable at (p,aw). Let y € EE_* and p'y = aw. Then p'(a'i}') = w. Hence
u[nf._ly} = u(x). Thus, by the homogeneity, uly) = ulwx). Hencs ax = x(p,aw).

By this result, |

vip,aw) = ulx(p,aw)) = u{ex(p,w)) = aulx(p,w)) = avip,w).

Thus the indirect utility function is hdmogeneous of degree one in w.

Given the above results, we can write x(p,w] = wx(p,1) = W;E(p) and v{p,w}
= wvip,l) = w;(p}. Exercise 2.E.4 showed that the wealth expanéion path
{x(p,w): w > 0} is a ray going through ;[p}. The wealth elasticity of demand

£ is equal to 1.
iw :

(b} We first prove that for every p € ERi_, w = 0, and @ = 0, we have x{p,aw) =
ax(p,w). In fact, since vi-,-) is homogeneous of degree one in w, ‘Upv(p,:xw} =
a‘?pv{p,w} and ‘?wvfp,aw} = va(p,wl. Thus, by Roy's identity, xi{p,aw) =
ax{p,w}.
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Now l=t x € K., x' € H+. u(x) = u(x'), and « = 0. Since u(-) is strictly

quasiconcave, by the supporting hyperplane theorem (Theorem M.G.3), there

1
exist p € E-‘v.:_'___, p e EE+, w =9 ard w' = 0 such that x = x(z,w) and x° =
x{p’,w'). Then u(x) = vip,w) and u(x’) = v(p’,w'). Hence vip,wr = vip’,w').

Taus, by the homogeneity, vip.aw) = v(p',aw’). But as we saw above, x(p,aw) =

ax a2nd x(p',aw’) = ax’. Hence vip,aw) = ulax) and v(p’,aw') = ulex’). Thus

ulax) = ulex'). Therefore ulx) is homogeneous of degree one.



.~ 1/le+B+y) 3 B’ ¥
3.0.6 {2) Define u(x) = = (x, - - - '
{2) Define ulx) = ulx) (xl bi} [xz bz) [::c3 by,
With o = a/{a + 8 + ¥}, ' = B/ln + B+y), 7 =¢/a+8+%), Thena + R’
+9 =] aad ul+) represents the same preferences as u(-), because the
o /ot ) )
iunction u 5 ul lasgey) 15 a monotone transformation. Thus we can assume

without loss of generality that o + B+y=1

(b} Use another monotone transformation of the given utility functien,

Inu(x} = aln[xl . bl) + Bin(x2 - b2] + 3ln[13 - b3}'

The first-order condition of the UMP yields the demand functicn

x(p,wl = [b].bz.ba) + (w - p'b)(ﬁ./pl,ﬁ/pz,g/pjl,
where peb = plbl + pzbz + p3b3' Plug this demand function to u(:), then we
obtain the indirect utility function

vip.w) = (w - p-bna/pllmtraxpzlﬁtz/pgﬁ.



{c) To check the homogeneity of the demand function,
x{Ap,Aw) = (bl,bz,b3] + {(Aw - ?Lp'b}(a/hpl,ﬁ/?tpz,‘z/lpB}

= {bl,bz,bS) + (w = p'bNa/pI.B/PZJ/PE} = x(p,w).

To check Walras law,

p-x(p.w) = p'b + (w - p-bi(placfpl + pZB/pz + pga-/pB}

=

=p'b+ (w - p-bla + B +17) = w.

The uniqueness is obvious.

To check the homogeneity of the indirect utility functien,

vAp,AW) = (Aw - Ap-b)a/Ap 1%(B/Ap. P (3/Ap. )7
1 2 3

_ al-letBer) p.b)wpl}“mfpz)ﬁf?/%’?

= (w - prolap)%Bp,Pla/p)7 = vip,w).
To check the monotonicity,

avip,wlsow = (a7p)"8/p Piarp )7 > o

Sv{p,wlz"épi vip,wi: (- tx/le < Q,

It

c’w(p,w}/t"}pz vip,w)- (- B/pz} <0,

I

Bv(p,w)/ap3 vip,w)« (- ?,r/p3) < 0.

The continuity follows directly from the given functional form. In order to
prove the quasiconvexity, it is sufficient to prove that, for any v € R and w
> 0, the set {p € P\E: vip,w) = v} is convex. Consider

inv(p,w) = aina + RinB + 7lny + In(w - p'b) - mlnpl - ji'lnp2 - xlnp:}-

Since the logarithmic function is concave, the set



3.E.4 Suppose first that » is convex and that x € hip,u) and X' € hip,ul.

Then p'x = p'x’ and u(x) =z u, u{x') =z u. Let « € [0,1] and define x" = ex +

(1 -

a)x’. Then p'Xx" = ap'x + (1 - alp'x’" = p'x = p-x’ and, by the convexity

of >, u(x") =z u. Thus x" € hip,ul.

® =

o €

Suppose next that » is strictly convex and that X € hip,u), ¥’ € hip,u},
%', and ulx) = u(x’) = u. By the argument above, X" = ax + (1 - a)x’ with

(0,1) satisfies p-x" = p'x = p'X’ and, by the strict convexity of », we

have x" » x’. Since > is continuous, gx" » x' for any g € (0,1) closs enough

to 1. But this implies that p-{BX"} < p-x and u(Bx") > ulx’) = v, which
contradicts the fact that x.is a solution of the EMP. Hence ni- u) must be 2
singieton.

3.E.9 First, we shall prove that Propositicn 3.D.3 implies Proposition 3.E.2
via (3.E1l. Letp> 0, p’">> 0, ueR v eR, and « = 0.
(i) Homogeneity of degree one in p: Let « > 0.- Define w = e(p,u), then u =
v{p,w) by the second relation of (3.E.1). Hence

elap,u) = elap,vip,w)) = elep,viap,aw)} = ew = ael(p,u),
where the second equality follows from the homegeneity of v(-,-) ané the third
from the first relation of (3.E.1).
(ii) Monotonicity: Let v’ > u. Define w = elp,u) and w' = e(p,u’), then v =
v(p,w) and u' = vip,w’}. By the monotenicity of v(-,-) in w, we must have w’

> w, that is, e(p',u) > elp,u).



Next let p' = p. Define w = e(p,u) and w’ = e(p',ul, then, by the second
refaticn of (3.E.1}, u = vip,w) = v(p',w'). By the monotonicity of v(+, ), we
must have w' z w, that is, elp’,u) = elp,u).

(iii) Concavity: Let « € [0,1]. Define w = elp,u) and W' = e(p',u), then u =
vip,w) = v(p',w). Define p" = ap + (I - a)p" and w" = qw + (1 - a}w’. Then,
by the guasiconvexity of w{-,+), v(p",w") = u. Hence, by the monotonicity of

v(+,+) in w and the second relation of (3.E.1), w" = e(p",u). that is,

elap + {1 - alp’, u) = aelp,u) + (I - alelp’ u).



