3.D.3 (a) We shall prove that for every $p \in \mathbb{R}_{++}^L$, $w \ge 0$, $\alpha \ge 0$, and $x \in \mathbb{R}_{+}^L$, if

x = x(p,w), then $\alpha x = x(p,\alpha w)$. Note first that $p \cdot (\alpha x) \le \alpha w$, that is, αx is affordable at $(p,\alpha w)$. Let $y \in \mathbb{R}^L_+$ and $p \cdot y \le \alpha w$. Then $p \cdot (\alpha^{-1}y) \le w$. Hence $u(\alpha^{-1}y) \le u(x)$. Thus, by the homogeneity, $u(y) \le u(\alpha x)$. Hence $\alpha x = x(p,\alpha w)$. By this result,

 $v(p,\alpha w) = u(x(p,\alpha w)) = u(\alpha x(p,w)) = \alpha u(x(p,w)) = \alpha v(p,w).$

Thus the indirect utility function is homogeneous of degree one in w.

Given the above results, we can write $x(p,w) = wx(p,1) = w\widetilde{x}(p)$ and $v(p,w) = wv(p,1) = w\widetilde{v}(p)$. Exercise 2.E.4 showed that the wealth expansion path $\{x(p,w): w > 0\}$ is a ray going through $\widetilde{x}(p)$. The wealth elasticity of demand $\varepsilon_{\ell w}$ is equal to 1.

(b) We first prove that for every $p \in \mathbb{R}^L_{++}$, $w \ge 0$, and $\alpha \ge 0$, we have $x(p,\alpha w) = \alpha x(p,w)$. In fact, since $v(\cdot,\cdot)$ is homogeneous of degree one in w, $\nabla_p v(p,\alpha w) = \alpha \nabla_p v(p,w)$ and $\nabla_w v(p,\alpha w) = \nabla_w v(p,w)$. Thus, by Roy's identity, $x(p,\alpha w) = \alpha x(p,w)$.

Now let $x \in \mathbb{R}^L_+$, $x' \in \mathbb{R}^L_+$, u(x) = u(x'), and $\alpha \ge 0$. Since $u(\cdot)$ is strictly quasiconcave, by the supporting hyperplane theorem (Theorem M.G.3), there exist $p \in \mathbb{R}^L_{++}$, $p' \in \mathbb{R}^L_{++}$, $w \ge 0$, and $w' \ge 0$ such that x = x(p,w) and x' = x(p',w'). Then u(x) = v(p,w) and u(x') = v(p',w'). Hence v(p,w) = v(p',w'). Thus, by the homogeneity, $v(p,\alpha w) = v(p',\alpha w')$. But as we saw above, $x(p,\alpha w) = \alpha x$ and $x(p',\alpha w') = \alpha x'$. Hence $v(p,\alpha w) = u(\alpha x)$ and $v(p',\alpha w') = u(\alpha x')$. Thus $u(\alpha x) = u(\alpha x')$. Therefore u(x) is homogeneous of degree one.

3.D.6 (a) Define $\widetilde{u}(x) = u(x)^{1/(\alpha+\beta+\gamma)} = (x_1 - b_1)^{\alpha'}(x_2 - b_2)^{\beta'}(x_3 - b_3)^{\gamma'}$, with $\alpha' = \alpha/(\alpha + \beta + \gamma)$, $\beta' = \beta/(\alpha + \beta + \gamma)$, $\gamma' = \gamma/(\alpha + \beta + \gamma)$. Then $\alpha' + \beta' + \gamma' = 1$ and $\widetilde{u}(\cdot)$ represents the same preferences as $u(\cdot)$, because the function $u \to u^{1/(\alpha+\beta+\gamma)}$ is a monotone transformation. Thus we can assume without loss of generality that $\alpha + \beta + \gamma = 1$.

(b) Use another monotone transformation of the given utility function,

$$lnu(x) = \alpha ln(x_1 - b_1) + \beta ln(x_2 - b_2) + \gamma ln(x_3 - b_3).$$

The first-order condition of the UMP yields the demand function

$$\varkappa(\mathtt{p},\mathtt{w}) = (\mathtt{b}_1,\mathtt{b}_2,\mathtt{b}_3) + (\mathtt{w} - \mathtt{p} \cdot \mathtt{b})(\alpha/\mathtt{p}_1,\beta/\mathtt{p}_2,\gamma/\mathtt{p}_3),$$

where $p \cdot b = p_1 b_1 + p_2 b_2 + p_3 b_3$. Plug this demand function to $u(\cdot)$, then we obtain the indirect utility function

$$v(p,w) = (w - p \cdot b)(\alpha/p_1)^{\alpha}(\beta/p_2)^{\beta}(\gamma/p_3)^{\gamma}.$$

(c) To check the homogeneity of the demand function,

$$\begin{split} \varkappa(\lambda \mathbf{p}, \lambda \mathbf{w}) &= (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) + (\lambda \mathbf{w} - \lambda \mathbf{p} \cdot \mathbf{b}) (\alpha / \lambda \mathbf{p}_1, \beta / \lambda \mathbf{p}_2, \gamma / \lambda \mathbf{p}_3) \\ &= (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) + (\mathbf{w} - \mathbf{p} \cdot \mathbf{b}) (\alpha / \mathbf{p}_1, \beta / \mathbf{p}_2, \gamma / \mathbf{p}_3) = \varkappa(\mathbf{p}, \mathbf{w}). \end{split}$$

To check Walras law,

$$p \cdot x(p, w) = p \cdot b + (w - p \cdot b)(p_1 \alpha/p_1 + p_2 \beta/p_2 + p_3 \gamma/p_3)$$

= $p \cdot b + (w - p \cdot b)(\alpha + \beta + \gamma) = w$.

The uniqueness is obvious.

To check the homogeneity of the indirect utility function,

$$\begin{split} v(\lambda \mathbf{p}, \lambda \mathbf{w}) &= (\lambda \mathbf{w} - \lambda \mathbf{p} \cdot \mathbf{b}) (\alpha / \lambda \mathbf{p}_1)^{\alpha} (\beta / \lambda \mathbf{p}_2)^{\beta} (\gamma / \lambda \mathbf{p}_3)^{\gamma} \\ &= \lambda^{1 - (\alpha + \beta + \gamma)} (\mathbf{w} - \mathbf{p} \cdot \mathbf{b}) (\alpha / \mathbf{p}_1)^{\alpha} (\beta / \mathbf{p}_2)^{\beta} (\gamma / \mathbf{p}_3)^{\gamma} \\ &= (\mathbf{w} - \mathbf{p} \cdot \mathbf{b}) (\alpha / \mathbf{p}_1)^{\alpha} (\beta / \mathbf{p}_2)^{\beta} (\gamma / \mathbf{p}_3)^{\gamma} = v(\mathbf{p}, \mathbf{w}). \end{split}$$

To check the monotonicity,

$$\begin{split} \partial v(\mathbf{p},\mathbf{w})/\partial \mathbf{w} &= \left(\alpha / \mathbf{p}_1\right)^{\alpha} (\beta / \mathbf{p}_2^{-})^{\beta} (\gamma / \mathbf{p}_3)^{\gamma} > 0, \\ \partial v(\mathbf{p},\mathbf{w})/\partial \mathbf{p}_1 &= v(\mathbf{p},\mathbf{w}) \cdot (-\alpha / \mathbf{p}_1) < 0, \\ \partial v(\mathbf{p},\mathbf{w})/\partial \mathbf{p}_2 &= v(\mathbf{p},\mathbf{w}) \cdot (-\beta / \mathbf{p}_2) < 0, \\ \partial v(\mathbf{p},\mathbf{w})/\partial \mathbf{p}_3 &= v(\mathbf{p},\mathbf{w}) \cdot (-\gamma / \mathbf{p}_3) < 0. \end{split}$$

The continuity follows directly from the given functional form. In order to prove the quasiconvexity, it is sufficient to prove that, for any $v \in \mathbb{R}$ and w > 0, the set $\{p \in \mathbb{R}^3 : v(p,w) \le v\}$ is convex. Consider

 $\ln\nu(p,w) = \alpha \ln\alpha + \beta \ln\beta + \gamma \ln\gamma + \ln(w - p \cdot b) - \alpha \ln p_1 - \beta \ln p_2 - \gamma \ln p_3.$ Since the logarithmic function is concave, the set

3.E.4 Suppose first that \succeq is convex and that $x \in h(p,u)$ and $x' \in h(p,u)$. Then $p \cdot x = p \cdot x'$ and $u(x) \ge u$, $u(x') \ge u$. Let $\alpha \in [0,1]$ and define $x'' = \alpha x + (1 - \alpha)x'$. Then $p \cdot x'' = \alpha p \cdot x + (1 - \alpha)p \cdot x' = p \cdot x = p \cdot x'$ and, by the convexity of \succeq , $u(x'') \ge u$. Thus $x'' \in h(p,u)$.

Suppose next that \succeq is strictly convex and that $x \in h(p,u)$, $x' \in h(p,u)$, $x \neq x'$, and $u(x) \geq u(x') \geq u$. By the argument above, $x'' = \alpha x + (1 - \alpha)x'$ with $\alpha \in (0,1)$ satisfies $p \cdot x'' = p \cdot x = p \cdot x'$ and, by the strict convexity of \succeq , we have $x'' \succ x'$. Since \succeq is continuous, $\beta x'' \succ x'$ for any $\beta \in (0,1)$ close enough to 1. But this implies that $p \cdot (\beta x'') and <math>u(\beta x'') > u(x') \geq u$, which contradicts the fact that x is a solution of the EMP. Hence n(x,u) must be a singleton.

- 3.E.9 First, we shall prove that Proposition 3.D.3 implies Proposition 3.E.2 via (3.E.1). Let p >> 0, p' >> 0, $u \in \mathbb{R}$, $u' \in \mathbb{R}$, and $\alpha \ge 0$.
- (i) Homogeneity of degree one in p: Let $\alpha > 0$. Define w = e(p,u), then $u = \nu(p,w)$ by the second relation of (3.E.1). Hence

$$e(\alpha p, u) = e(\alpha p, v(p, w)) = e(\alpha p, v(\alpha p, \alpha w)) = \alpha w = \alpha e(p, u),$$

where the second equality follows from the homogeneity of $v(\cdot,\cdot)$ and the third from the first relation of (3.E.1).

(ii) Monotonicity: Let u' > u. Define w = e(p,u) and w' = e(p,u'), then u = v(p,w) and u' = v(p,w'). By the monotonicity of $v(\cdot,\cdot)$ in w, we must have w' > w, that is, e(p',u) > e(p,u).

Next let $p' \ge p$. Define w = e(p,u) and w' = e(p',u), then, by the second relation of (3.E.1), u = v(p,w) = v(p',w'). By the monotonicity of $v(\cdot,\cdot)$, we must have $w' \ge w$, that is, $e(p',u) \ge e(p,u)$.

(iii) Concavity: Let $\alpha \in [0,1]$. Define w = e(p,u) and w' = e(p',u), then u = v(p,w) = v(p',w). Define $p'' = \alpha p + (1-\alpha)p''$ and $w'' = \alpha w + (1-\alpha)w'$. Then, by the quasiconvexity of $v(\cdot,\cdot)$, $v(p'',w'') \le u$. Hence, by the monotonicity of $v(\cdot,\cdot)$ in w and the second relation of (3.E.1), $w'' \le e(p'',u)$. that is, $e(\alpha p + (1-\alpha)p', u) \ge \alpha e(p,u) + (1-\alpha)e(p',u).$