1.B.1 Since y + z implies $y \ge z$, the transitivity implies that $x \ge z$. Suppose that $z \ge x$. Since $y \ge z$, the transitivity then implies that $y \ge x$. But this contradicts x > y. Thus we cannot have $z \ge x$. Hence x > z. 1.B.2 By the completeness, $x \ge x$ for every $x \in X$. Hence there is no $x \in X$ such that x > x. Suppose that x > y and y > z, then $x > y \ge z$. By (iii) of Proposition 1.B.1, which was proved in Exercise 1.B.1, we have x > z. Hence > is transitive. Property (i) is now proved.

As for (ii), since $x \geq x$ for every $x \in X$, $x \sim x$ for every $x \in X$ as well.

Thus - is reflexive. Suppose that $x \sim y$ and $y \sim z$. Then $x \geq y$, $y \geq z$, $y \geq x$, and $z \geq y$. By the transitivity, this implies that $x \geq z$ and $z \geq x$. Thus $x \sim z$. Hence - is transitive. Suppose x that - y. Then $x \geq y$ and $y \geq x$. Thus $y \geq x$ and $x \geq y$. Hence $y \sim x$. Thus - is symmetric. Property (ii) is now proved.

- 3.B.2 Suppose that $x \gg y$. Define $\varepsilon = \min\{x_1 y_1, ..., x_L y_L\} > 0$, then, for every $z \in X$, if $\|y z\| < \varepsilon$, then $x \gg z$. By the local nonsatiation, there exists $z^* \in X$ such that $\|y z^*\| < \varepsilon$ and $z^* \succ y$. By $x \gg z^*$ and the weak monotonicity, $x \succeq z^*$. By Proposition 1.B.1(iii) (which is implied by the transitivity), $x \succ y$. Thus \succeq is monotone.
- 3.C.2 Take a sequence of pairs $\{(\mathbf{x}_{\cdot}^n, \mathbf{y}_{\cdot}^n)\}_{n=1}^{\infty}$ such that $\mathbf{x}_{\cdot}^n \succeq \mathbf{y}_{\cdot}^n$ for all $n, \mathbf{x}_{\cdot}^n \to \mathbf{x}$, and $\mathbf{y}_{\cdot}^n \to \mathbf{y}$. Then $u(\mathbf{x}_{\cdot}^n) \succeq u(\mathbf{y}_{\cdot}^n)$ for all n, and the continuity of $u(\cdot)$ implies that $u(\mathbf{x}) \succeq u(\mathbf{y})$. Hence $\mathbf{x} \succeq \mathbf{y}$. Thus \succeq is continuous.
- 3.C.5 (a) Suppose first that $u(\cdot)$ is homogeneous of degree one and let $\alpha \ge 0$, $x \in \mathbb{R}_+^L$, $y \in \mathbb{R}_+^L$, and $x \sim y$. Then u(x) = u(y) and hence $\alpha u(x) = \alpha u(y)$. By the homogeneity, $u(\alpha x) = u(\alpha y)$. Thus $\alpha x \sim \alpha y$.

Suppose conversely that \succeq is homothetic. We shall prove that the utility function constructed in the proof of Proposition 3.C.1 is homogeneous of degree one. Let $x \in \mathbb{R}^L_+$ and $\alpha > 0$, then $u(x)e \sim x$ and $u(\alpha x)e \sim \alpha x$. Since \succeq is homothetic, $\alpha u(x)e \sim \alpha x$. By the transitivity of \sim (Proposition 1.B.1(ii)), $u(\alpha x)e \sim \alpha u(x)e$. Thus $u(\alpha x) = \alpha u(x)e$.